# Hort Innovation

# **Final Report**

# Part 1 of Healthy Homes Index project

Marco Amati RMIT University, University of Melbourne

Project Number: NY16008

#### NY16008

This project has been funded by Hort Innovation using the research and development Nursery levy and funds from the Australian Government.

Hort Innovation makes no representations and expressly disclaims all warranties (to the extent permitted by law) about the accuracy, completeness, or currency of information in *Part 1 of Healthy Homes Index project.* 

Reliance on any information provided by Hort Innovation is entirely at your own risk. Hort Innovation is not responsible for, and will not be liable for, any loss, damage, claim, expense, cost (including legal costs) or other liability arising in any way (including from Hort Innovation or any other person's negligence or otherwise) from your use or non-use of *Part 1 of Healthy Homes Index project*, or from reliance on information contained in the material or that Hort Innovation provides to you by any other means.

ISBN 978 0 7341 4342 6

Published and distributed by: Hort Innovation Level 8, 1 Chifley Square Sydney NSW 2000 Tel: (02) 8295 2300 Fax: (02) 8295 2399

© Copyright 2017

### Content

| Summary                                 | 3  |
|-----------------------------------------|----|
| Keywords                                | 4  |
| Introduction                            | 5  |
| Methodology                             | 6  |
| Outputs                                 | 9  |
| Outcomes                                | 10 |
| Evaluation and discussion               | 11 |
| Recommendations                         | 16 |
| Scientific refereed publications        | 18 |
| Intellectual property/commercialisation | 19 |
| References                              | 20 |
| Acknowledgements                        | 22 |
| Appendices                              | 23 |

### Summary

For over 50 years research has demonstrated that plants deliver benefits for urban citizens by reducing air pollution and supporting well-being. As cities in Australia increase their density it is important to understand how plants can benefit people in denser spaces, such as apartments. A range of research shows the benefits of plants in indoor and outdoor settings for remediating air pollution, improving mental health and concentration. In this project, our aim was to draw on this literature and systematically review and synthesise this knowledge to derive a scale of plant benefits. The intention is a scale optimised for easy integration into a smart device application (app) that interactively asks users to rate and improve their spaces using plants and by doing so encourages them to understand the benefits that plants bring.

To increase the reliability of the outcome the project applied a limited Delphi expert panel focus group process. The expert group met and iteratively contributed to the rating. The outputs of the research include a literature review with a summary document, recordings of the discussions amongst the expert panel, and scales of plant benefits that can be integrated into the app. During the process, to gain consensus among the expert panel members we have subscribed to the Best Available Scientific Evidence (BASEline) approach. As much as possible we used high quality science to determine the relevant relationships but, where information was not adequate to contribute to the index, the research team estimated the most likely relationships. In the spirit of the Delphi method, which was developed to provide answers in the face of inadequate information or time, we have aimed to provide best available input into the app while acknowledging the gaps in the research. We anticipate that the identification of these gaps will guide future research that will contribute to the broader understandings initiated in this project.

### Keywords

Indoor plants; indoor air quality; well being; Delphi methods

### Introduction

Our society has an innate emotional affiliation to other living organisms in nature (Edward O. Wilson). However, human beings are spending less and less time in nature. Current estimates indicate that urban dwellers spend 90% of their time in indoor environments (USEPA 2007). In addition to being disconnected from nature we are exposed to indoor contaminant compounds. Both conditions are detrimental to our psychological and physiological health. For instance, Kaplan's (1995) attention restoration theory explains that nature's complexity can naturally avert the fatigue resulting from the prolonged mental effort; in an indoor environment this could be explained by a both our instinctive inclination to nature (biophilia) or by the plants' ability to remove the contaminants from the air.

Over the past 50 years, research has explored the potential role of nature to improve our mental and physical wellbeing by incorporating the experience of nature within the built environment and its role in improving indoor air quality. In particular, immersive active experiences in nature (i.e. running, vacationing) are regarded as highly restorative (Bratman et al. 2015; Korpela et al. 2017); however, there is also evidence that passive experience of nature (i.e. indoor plants, views out windows, etc.) can have a strong positive impact (Bringslimark et al. 2009). The benefit depends on the individual preferences of the person experiencing nature (Hartig et al. 2003; Morton et al. 2017).

The exposure to indoor pollutants can lead to adverse health outcomes such as pulmonary diseases and Sick Building Syndrome (SBS), these result from exposure to Particulate Matter (PM) and Volatile Organic Compounds (VOC) respectively. Common symptoms include tiredness and drowsiness without an apparent reason, difficulty breathing, restlessness, inability to concentrate or focus, irritation of the eyes, throat, and nose. Furthermore, the effects disappear when leaving the room. The likelihood that an individual will be affected by the presence of a contaminant depends upon: the contaminant concentrations and the individual's sensitivity to that contaminant; the current state of their psychological and physical health; and, the duration and frequency of exposure. In severe cases, high levels of contaminants can lead to disability, disease, and death.

The relationship between indoor plants and their benefits is difficult to quantify as it is a complex process mediated by the interaction of a wide range of variables. Research studies generally focus on single elements to explore the direct correlation between the analysed variable and the observed effect. While this is the key to rigorous research, it also leads to partial understandings of the system. The aim of the literature review within this project was to gain an holistic understanding of the physiological and psychological benefits of plants through a systematic approach.

| Compound CAS <sup>a</sup> | CAS*          | Pri | ority I | int   | Indoa<br>(ag m | r concentrati<br><sup>-3</sup> ) | on                      | Recommended<br>values (µg m <sup>-3</sup> ) | IARC* | Health effects                                            | References                                                     |
|---------------------------|---------------|-----|---------|-------|----------------|----------------------------------|-------------------------|---------------------------------------------|-------|-----------------------------------------------------------|----------------------------------------------------------------|
|                           |               | HP. | A OQA   | PHWH0 | Min            | Max                              | Average                 |                                             |       |                                                           |                                                                |
| Acetaldehyde              | 75-07-0       | *   | HP      |       | 3.24           | 119<br>78.0                      | 18.9<br>12.0            | DC.                                         | 28    | Respiratory disorders, irritation of the eyes             | Weisel et al. (2005)<br>Mosqueron and Nedellec<br>(2002)       |
| Benzene                   | 71-43-2       | ×.  | HP      |       | 0.48           | 364                              | 2.90                    | 0.17<br>UC#                                 | 3     | Immunological disorders, leukemia,<br>neurological effect | Weisel et al. (2005)<br>Edwards et al. (2001)                  |
| Dieldrin                  | 60-57-1       | 8   | Р.      |       |                | 6.00×10 <sup>-4</sup>            | 7.00 = 10 <sup>-4</sup> | ÷.                                          | 3     | Neurological effect, cancer of the liver                  | Mosqueron and<br>Nedelle: (2002)                               |
| Dichlarvos                | 62-73-7       | ж.  | HIP.    |       |                | 2.24                             | 0.455                   | *                                           | 28    | Neurological effect, cancer of the liver                  | Mesqueron and<br>Nedellec (2002)                               |
| Formaldehyde              | 50-00-0       | а.  | HIP.    |       | 11.2           | 53.8<br>62.3                     | 20.1 33.0               | 1000 (1 h)<br>60°                           | 2A    | Respiratory disorders, irritation<br>of the eyes          | Weisel et al. (2005)<br>Edwards et al. (2001)                  |
| Naphthalene               | 91-20-3       | *   |         | *     | 2.20           | 90.1                             |                         | 1                                           | 211   | 5 000 K T T MIT W                                         | Mosqueron and<br>Nedellec (2004)                               |
| Tetrachlorethylene        | 127-18-4      | 8   | P       | 8     | 0.10           | 20.9<br>73.6                     | 0,56<br>1,38            | 250<br>LPC <sup>4</sup>                     | AC    | Neurological effect, renal disorder                       | Weisel et al. (2005)<br>Mosqueron and<br>Nedeline (2002)       |
| foluene                   | 108-88-<br>33 | 7   | p       | 7     | 2.83           | 122                              | 10.1                    | 260                                         | 3     | Neurological effect                                       | Weisel et al. (2005)                                           |
| Trichlorethylene          | 79-01-6       | 0   | P       | 8     | 0.04           | 247<br>7.84<br>41.8              | 14.6<br>0.12<br>0.86    | 2.3<br>UC <sup>d</sup>                      | 2A    | Neurological effect, cancer<br>of the texticles           | Edwards et al. (2001)<br>Weisel et al. (2005)<br>Mosqueron and |

Table 1: Example of VOC found indoors, their average levels and their detrimental health effects. This table was extracted from Guieysse et al. 2008

Chemical Abstract Service

Chemical Abstract Service. HP: High Priority, P. Priority, International Agency for Research on Cancer (JARC) classification: Group 1: agent carcinogenic to humans, group 2A: agent probably carcinogenic to humans, group 2B: agent solidy carcinogenic to humans, Group 3: agent not classifiable as to humans, group 4: agent not carcinogenic to humans, ns: non-study. NICSH recommended for the carcinogenic lowest Feasible Concentration, Canada (1987).

### Methodology

### **Literature Review**

For the analysis of the relevant literature, we adopted the methodology of Bringslimark et al. (2009) comparing papers based on the following characteristics: study subjects, methodology, exposure to stimuli, outcome measure, and findings. The approach was widened by including the project's scope (indoor, outdoor), the scale (small, medium, large) and the description of the plants in terms of species, age and soil characteristics as reported by the authors.

#### Delimiting relevant literature for academic rigour

We located the material for review through standard methods including electronic databases and snowballing (e.g. one paper referring to another). To enhance the reliability of the data, we focused on research papers, conference proceedings and official reports with a clear experimental or a quasi-experimental methodology. Furthermore, we assessed the methodology to ensure studies established a baseline level by the inclusion of a no-plant control or a repeated measures approach (before vs. after plant treatment). Informal publications such as science communication magazines, papers and blogs were excluded from the study.

#### Literature analysis

After an initial categorisation according to a range of benefits, the papers were classified according to two broad benefits: air quality and well-being. In particular, air quality was defined as studies assessing a plant's ability to affect the concentration of airborne compounds (inorganic and organic compounds) and/or particulate matters (PM). Meanwhile, well-being was defined as any direct (i.e. improved mood, concentration) or indirect benefit (i.e. productivity, prosocial behaviour) that could be attributed to the presence of plants. Based on the details above, a total of 101 articles were included (43 for air quality, 57 for well-being and 1 for both). Of these, the data of 76 articles were read from the original source while the remaining articles (25) were included from a secondary source. In the latter cases, the original source could not be found within the project's timeframe and the secondary source was detailed enough to meet the information criteria as described above. These studies were summarised and included from reviews.

### Transforming the literature into a Plant-life balance index

#### Air Quality Removal Rate Meta-analysis

To enhance the understanding of the literature, we took data from relevant research papers for further analysis, we specifically performed an air quality meta-analysis. This analysis compiled all reported plant species, contaminant removal rates, and air volume for studies that utilised a sealed air chamber; when available, we also compiled plant's leaf area, aesthetic category (i.e. foliage, fern, woody), and authors' categorization of the plant as a high, medium, or low contaminant removalist. Studies that did not provide enough information were eliminated from the aggregation. this includes experiments conducted outside of sealed chambers, compounds with insufficient data for analysis (i.e. NOx, aldehyde, ozone), articles reporting aeromycota and PM.

The removal rates reported on the selected 15 studies were compiled and re-analysed. These studies specifically reported removal rates for CO<sub>2</sub>, formaldehyde and VOC. More specifically, VOC studied and included in the meta-analysis are benzene, toluene, octane, TCE and xylene. To ensure that the studies were comparable to each other, we converted the units to **µg/hour/m<sup>3</sup> of air/m<sup>2</sup> of leaf area**. To convert the study units, we ran the database in R Version 3.4.1. This information was used to explore the relationship between removal rates of different contaminants and the relationship between plant size and removal rate. For the meta-analysis, we developed a python program in Jupiter

#### Notebook.

#### Categorising plants based on the efficiendy of removal

There are three key studies to determine removal efficiency category. Yang et al. (2009) who measured the removal rate of 28 different species for five different VOC; Liu et al. (2007) who measured benzene removal rates of 73 species, and Kim et al. (2008) who measured the effectivity of formaldehyde removal of 86 different indoor plant species. These studies were used to establish the range of values that determine the efficiency category. In particular, the first study provided a categorization of the plants based on their efficiency to remove total VOC. These values were validated with the second study. The removal efficiency category for formaldehyde was established by the reviewers (Marco Amati, Dominique Hes and Cris Hernandez) utilising the third study as an example. Unfortunatley, to the best of our knowledge, no study has determined said parameters.

#### **Deliberation through a Delphi Methodology**

The Delphi method assumes that expert group judgments are more valid than individual judgments. The Delphi method was developed at the beginning of the Cold War to forecast the impact of technology on warfare (Custer et al. 1999). Since then the methodology has been used when there is need to provide direction and synthesis of existing research without the time or resources to do primary research. In this project, the research on the benefits of plants was summarized, presented, and discussed with the aim to provide a way to be able to simplify the benefits of plants. This project adopted a modified Delphi methodology appointing an expert panel to aid in the literature review and the valuation method of the index. The core team, comprised by Marco Amati, Dominique Hes and Cristina Hernandez conducted the literature review, created an initial benefit table based on the findings and gained ethics approval from RMIT University's Human Research Ethics Committee (DSC CHEAN A 20793-04/17). We had a total of three different meetings for planning, review, and deliberation. The expert panel also reviewed the present report to ensure it was representative of the topics discussed.



Figure 1: Methodology as applied by this project

#### **Expert Panel**

A key part of the project was to appoint a panel with the necessary expertise and networks to conduct the Delphi study. At all stages of the panel discussion and throughout the development of the index, the project leads guided the knowledge transfer process using the following questions:

- Is the scale robust and defensible from a scientific point of view?
- Is the scale developed relevant to all of the stakeholders in the project?
- Does it provide enough information when used in an app context?

| Name                    | Area of Expertise                                                                   | Institution                      |
|-------------------------|-------------------------------------------------------------------------------------|----------------------------------|
| A/Prof Sara Wilkinson   | Mental health and greenery, green roofs                                             | University of Technology, Sydney |
| A/Prof Cheryl Desha     | Hospitals and green spaces. Health and plants                                       | Griffith University              |
| Dr Jana Soderlund       | Greenspaces and Biophilia                                                           | Curtin University                |
| A/Prof Nick Williams    | The benefits of plants and green spaces in an urban environment such as green roofs | University of Melbourne          |
| A/Prof Kathryn Williams | The psychological benefits of plants and the environment                            | University of Melbourne          |

### **Outputs**

The outputs can be subdivided into three sections:

### Holistic understanding of the benefits of plants

- A holistic literature review summarising the key findings and patterns emerging from 43 studies on air quality and 57 studies on well-being (Appendix 1).
- A preliminary meta-analysis of air quality studies reporting removal rates for inorganic and organic compounds (Appendix 2). This meta-analysis led to:
  - o Identification of toluene and/or benzene as a proxy for VOC removal rate categorization.
  - Parameters for VOC removal rate categorization based on benzene, toluene, TCE, and xylene (emerging from literature).
  - o Confirmation that there is no relationship between removal rates and leaf area for different species
  - o Confirmation that there is no relationship between removal rate of formaldehyde and other VOCs
  - Identification of a list of plants that have been screened during air quality tests and their removal category based on current research (Appendix 3).
- Benefit table listing the 101 articles reviewed through this research (Appendix 4).
- Recommendations for further research.

### **Plant-life Balance Index**

(formerly known as Healthy Home Index)

- An equation based on the current BASEline.
- A simplified equation for use in the app while acknowledging information gaps
- A clear understanding of the information gaps and areas where the expert panel gave responsibility to the core team to estimate information for the equation.

### Communication

- Frequent communication with the Plant Life Balance Index Team providing research updates and recommendations for the app development. Key meetings included:
  - Planning meeting to align the research, app development and communication strategy timelines.
  - Physical meeting in Sydney to present initial findings from the literature review.
  - Ongoing email communication providing feedback for the index equation.
  - Webinar sharing a presentation with preliminary meta-analysis results.
- List of limitations of the Plant Life Balance App.
- Recommendations for future app development.

### **Outcomes**

The outcomes of this project can be divided according to short, medium, and long-term goals:

Short term goals:

#### Validating the index that runs the app to improve the market messaging of the app

A key short-term outcome was to allow the effective summation and translation of a broad range of scientific understanding about the benefits of plants into an easy to apply index. The outcome is a seamless integration of knowledge into the app so that the user can understand both the possibilities and the limitations of the science around the benefits of indoor plants.

Medium term goals:

#### An evaluation of the limits and benefits of using a Delphi process in guiding Augmented Reality Environments

Augmented reality environments, such as the one developed in this project, call for rich and precise information so they can be called 'augmented reality' and not 'augmented fantasy'. Yet scientific knowledge is scattered among a range of sources and generated using very different means that might not be in dialogue with one another. In such situations of asymmetric and uncertain information, a consensus process using the Delphi method can help to identify areas where information is imprecise for users and identify gaps for further research. A specific output of this exercise has been the development of a BASEline (Best Available Scientific Evidence) of understanding (suggested during the discussions by one of the expert panel members).

Long term goals:

#### A greater understanding among the research community of the benefits of plants in indoor environments.

This research has identified key gaps in the literature, pointing to the need for further research in the following areas:

- Further research to identify the extent to which different plants are able to remove air pollutants. For example, it is clear from the meta-analysis that there is a lack of research on the rate of formaldehyde removal compared to VOCs such as benzene. While it is possible to categorise different plants according to their removal efficiency for VOCs this is not possible for formaldehyde (Appendix 2). Air pollution removal efficiency may be related to soil micro-organisms and stomata number as well as plant size, but it is not possible to know the extent without further research.
- The impact of a complex array of plants versus a monocultural array on well being
- Whether the relationship between plant benefits and the number of plants is different from that for air pollution

### **Evaluation and discussion**

This project drew upon literature exploring the benefits of plants in indoor and outdoor settings through experimental and quasi-experimental approaches. We found and categorised 101 different articles. Aside from articles examining Kaplan's (1995) attention restoration theory, the literature focused on topics relevant to indoor and outdoor environments. For the well-being evaluation, this included window views, art, plant props and the use of real plants within indoor environments. We argue that these apply to outdoor settings in dense urban environments that are similar to outside living areas such as balconies and patios. The articles were summarised and provided to the expert panel for discussion. The key aim of the panel was to consider the research to date and to provide a series of recommendations for the development of an index assessing the benefits of plants.

### **Development of a Plant-Life Balance Index**

The Plant-Life Balance app is a mobile application for users to optimise the use of plant for their physical and mental well being within and close to their homes. The app user can understand their current situation and then choose more plants to enhance the benefit for them. The research team and the expert panel would like to acknowledge that our role within this project was to establish the BASEline based on literature and provide recommendations for the development of the index. To achieve this purpose, we made the following assumptions:

- The app will be used for residential spaces. Following Australian standards, we assume a density of 2.2 2.6 residents per dwelling.
- There is strong evidence indicating that plants can improve indoor air quality and human well-being; however, to the best of our knowledge, research has not been conducted within residential spaces. This report draws on research from office spaces, laboratory settings and a few immersive experiences in vast natural environments and brings these learnings to the household. However, further research is needed within the residential setting proposed for use by the app.
- For indoor air quality, research shows that contaminant removal efficiency changes for each species. In particular, the gram negative microorganisms associated with the root system remove the highest proportion of organic compounds suggesting that larger pots will lead to higher contaminant removal. However, at this stage, this knowledge cannot be transferred to the app. It is, however, highly recommended that the information is shared with the users via a pop-up message, social media or other means available. The same research suggests that the type of substrate can lead to differences in removal efficiency. This topic requires further research. At this stage, the expert panel assumes that plants introduced to the residential settings will be planted in traditional potting soil mix. In addition, in outdoor settings any plants are likely to have a minimal impact on air pollution remediation because of air movements.
- We assume that the users of the app will provide a minimum standard of care to the plants such as access to adequate light and water.
- Although healthy plants, should not lead to an increase of aeromycota (Torpy et al. 2013), we do not
  recommend to place plants in closed areas (i.e. bedrooms). Thus, the app is valid for leaky indoor spaces such
  as a lounge or living room. For outdoor environments it only assesses well-being at the same scale for indoor
  spaces.
- We assume that the environmental conditions are kept at a relatively constant level. Either through natural climactic processes or with the plants placed within a constantly air conditioned environment, the temperature, humidity and light levels of the space are constant.
- Lastly, we assume that this report will be used as the first iteration of the Plant Life Balance App but that the process will allow for continued improvement of the index, the list of plants available and the knowledge of the plants.

#### **BASEline equation**

Based on the research BASEline, the benefits can be grouped into one of two categories: increased air quality and enhanced well-being. The separation of the benefits into two scales arose from the recommendations by the expert panel.

Air quality benefits emerge from plants' ability to act as a passive filter of particulates (PM) and their ability to actively remove contaminants. Plants can be categorised based on their efficiency to remove contaminants (high, medium or low). The BASEline indicates that at least three categories are needed: 1) PM removal ability, 2) VOC removal, and 3) formaldehyde removal. The leaf structure is the main element determining PM removal capacity (Dzierzanowski et al. 2011; Treesubsuntorn & Thiravetyan 2012) while VOC and formaldehyde are primarily driven by the microorganisms living within the root system (Orwell et al. 2004; Wood et al. 2006; Kim et al. 2008; Xu et al. 2011; Torpy et al. 2013). Other elements mediating organic compound removal are the number of stomata and wax in the leaves (Ugrekhelidze et al. 1997). At this stage, inorganic compounds such as NOx, SOx and CO have not been explored in sufficient depth. Based on our meta-analysis, there is no evidence that the removal capacity of plants is related to the plant size for different species, however it is related to plant size when one species is considered simply because a larger plant is likely to have more stomata to absorb pollutants.

To quantify indoor air quality benefits based on BASEline research, we suggest the following equation:

$$AQ = \sum_{i=1}^{n} \left(\beta VOC_{i} + \beta For_{i} + \beta PM_{i}\right)$$

Where AQ is the air quality benefit for *i* plant,  $\beta$  is the benefit weighting value for each assessed contaminant considering the removal efficiency for three different contaminants: VOC, formaldehyde (FOR) and particulate matter (PM). These three contaminants would be assessed based on plant's removal efficiency categorised as high, medium, or low. In particular, PM would then be separated based on the size of the particulates (PM<sub>10</sub>, PM<sub>2.5</sub>, UPM) being assessed but further research is required to further specify the most relevant paterns for PM. The number of plants are weighted by a plant multiplier (M) generated based on the size of the plant following a generic recommendation of **1 high air pollution removalist plant every 2m^2**.

Well-being benefits emerge from the plant's ability to act as a group. The index rates the group of plants based on their ability to fascinate or activate (complexity) and their ability to foster relaxation (de-stress). While identity, preference, and a sense of control over your own environment are all key elements to increase well-being, the team and the expert group believe these elements are addressed indirectly as the app user is choosing the plants based on looks. At a BASEline level, we suggest the following equation:

$$WB = \sum_{i=1}^{NP} \mathbf{M}_i * \sum_{i=1}^{C} p_i^2$$

Where the well-being (WB) is measured through the total number of plants (NP) and the complexity of the group (C). The complexity is assessed by weighting the number of species weighted by their proportion  $(p_i^2)$ . The value for M is as follows: a small plant has a value of 0.3, a medium sized plant has a value of 1, a large plant has a value of 1.5. These values were extracted based on the leaf area of the assessed plants and the number of plants that would be needed to fill  $1m^2$  of leaf area (Figure 2).

| Commercia | l size         | Plantation density range |                                          |                                              | Multiplier<br>Value |
|-----------|----------------|--------------------------|------------------------------------------|----------------------------------------------|---------------------|
| FI PI     | MALL<br>LANT   |                          | an a | Requiring more<br>than six plants per<br>m2. | 0.3                 |
| Mark Mark | IEDIUM<br>LANT | *                        | **                                       | Requiring one to<br>five plants per m2.      | 1                   |
|           | ARGE<br>LANT   |                          |                                          | Requiring less than<br>one plant per m2      | 1.5                 |

*Figure 2: Size in relation to plantation density and the multiplier value. For instance, each medium sized plant would be equivalent to 3-4 small plants, thus, the multiplier for small plants is 0.3* 

#### Limitations in the use of the above index

Acknowledging that this equation cannot be used in an Augmented Reality environment such as the one proposed, the above is considered an 'ideal' equation were information available to satisfy the BASEline information from the literature. The key elements that prevent the adoption of the above are:

- only 130 species have been categorised as high, medium or low based on their contaminant removal efficiency; the current list of species (Appendix 3) includes VOC and formaldehyde categories with minimal species overlap;
- there is little overlap between the screened species and the current list of species proposed for the app;
- a subsequent literature or experimental research is needed to determine the β for each contaminant;
- the design of the app precludes the user from using species in the initial assessment of their home.

#### **Simplified equation**

Acknowledging the need to generate options that the app developers can use, the core team decided to make the following adaptations to the formula:

$$PB = AQ + WB$$

$$AQ = \sum_{i=1}^{NP} \mathbf{M}_i$$

$$WB = \sum_{i=1}^{NP} M_i * (p_i = 1 \to 0.2)^{\wedge} (p_i < 1 \to 1)$$

The principal differences between the BASEline and the simplified equation for use in the app, is firstly, the Plant Benefits (*PB*) can be summed whereas in reality this relationship is unlikely to be able to be summed in a simple way. [Well-being benefits are mainly psychological, air quality benefits are mainly physiological. Secondly, in the BASEline equation the number of plant varieties ( $p_i$ ) affects the complexity whereas in the simplified equation if the proportion of a given plant variety is the same (i.e.  $p_i = 1$ ) then the benefits are reduced by multiplying by 0.2. If the number of plant varieties are more than 1 (i.e.  $p_i < 1$ ) then the well-being benefits remain the same. The value of 0.2 was estimated by the team but no BASEline information is available to confirm this.

AQ and WB are both primarily assessed by the total number of plants (NP) weighted by a plant multiplier (M) generated based on the size of the plant. The generic recommendation is slightly modified to **1 medium sized plant every 2m<sup>2</sup>**. The value for M is as follows: a small plant has a value of 0.3, a medium sized plant has a value of 1, a large plant has a value of 1.5. These values were extracted based on the leaf area of the assessed plants and the number of plants that would be needed to fill 1m<sup>2</sup> of leaf area (Figure 2). For well-being the difference with the BASEline equation shows that instead of  $p_i$  representing the proportion of species, instead it represents the proportion of plant sizes. This was done as the app users may not be able to provide the species of plants already available at their home but can provide a breakdown of plant sizes.

The equation used above is able to be used in the app but is not consistent with the BASEline established from the literature review, and is seen as a first step. In addition, for outdoor settings the Expert Panel agreed that the air quality part of the equation should not be included as the quantity of contaminants tends to be lower than indoors particularly with respect to VOCs and formaldehyde. The exception to this would be particulate matter, which is important outdoors, but the literature did not show enough information to conduct further analysis and draw conclusions.

### Further suggestions in the development of the app

The expert panel felt that the following topics were relevant for the long-term development of the app. For well-being, assigning a single ideal number of plants is a reductive approach. It is understood that different people have different preferences not only regarding the species they choose but how many are needed to gain the maximum level of well-being. This was discussed over a minimalist scenario where the recommended level of 1 medium sized plant every  $2m^2$  may be too much for some people or too little for others. Some expert panel members felt that it would be a better use a decision tree allowing users the choice based on their preferred level of complexity (from minimalist to standard to forest). Similarly, the current version of the app does not allow the user to prioritise between air quality and wellbeing benefits.

All members of the core team and the panel of experts know that the light levels will be key to the success of the plants. As such, a generic inquiry on how much sunlight enters the room can help filter the plant choices before they begin their search for plants. Although it has been indicated that this information will be provided to the user when they receive the full list of plants they chose, we believe that failing to filter the plants ahead of time will lead to a sub-optimal process of plant choice. Some expert members suggested this could appear as a pop-up message to educate the users ahead of time. Another approach suggested was to ask the user to install a free light levels app and use that data to assess the light levels of the room.

There was also disagreement regarding the plant options with some members stating a desire to avoid any weeds in the list while other members believing that, if the plants remain indoors, it is not of great consequence. Of course, often

plants from indoors environments end up in landfill or garden, so this is a consideration.

The expert panel believes that further research is needed based on plant typologies (leaf structure, standard leaf areas, etc). Research suggests that plant typology is more critical in understanding the benefits of plants but the expert panel acknowledges that this type of research is limited and requires longer time frames.

The research on well-being is vast and very diverse in nature. A vast literature exists on the relationship between plants and well-being in outdoor environments, but none on balconies and patios using potted plants. A large amount of literature exist on the well-being benefits of indoor plants. However, no standard measure of well-being has been developed. Well-being factors are highly interrelated, to one another and, from the existing research, only directional factors can be incorporated. The panel agreed on the following:

- a. A plant is better than a picture of a plant, which is better than a plant colour, which is better than nothing.
- b. More plants are better than fewer plants.
- c. More diverse is better than less diverse (the relationship between different plants, shapes) but dependent of a cohesive look. Organised complexity.
- d. Green foliage is better than other foliage.
- e. Flowers are better than no flowers.
- f. Air quality-plant relationship are valid for the app in indoor spaces, well-being-plant relationships are valid for outdoor and indoor spaces.

### Recommendations

### **Recommendations for the App Development Process**

The team involved in this process identified that a significant knowledge gap exists between the simplified equation and the BASEline research. Further research should be invested in understanding the contaminant removal efficiency per species included in the app and migrating to the BASEline equation. The differences between the equations is summarized in the diagram below:



Figure 3: Summary diagram outlining the method used to generate knowledge in the project and the difference between the BASEline equation generated from the literature and the simplified equation to be used for the app.

### **Recommended topics for pop-up messages.**

The literature tables can be used to extract many quick facts to create a 'did you know?' pop-up approach. Some topics that should be incorporated are:

- The relevance of microorganisms in the soil as key purifiers of the air.
- Recommendations on when to transplant and the benefits of doing so through allowing the root system to grow.
- Happy plants make for happy people. The plants need to be healthy to provide well-being benefits; unhealthy plants on the other hand can have a negative impact.

### **Recommendations for future research**

There are three ways to improve research and current BASEline levels:

Conduct studies within a residential environment. To the best of our knowledge, most studies exploring well-being effects are done at office spaces, hospitals, schools, care centres or through immersive experiences in a natural environment.

Conduct a higher number of field studies for air quality. In particular, studies assessing existing levels of contaminants and adding plants until saturation would be ideal to test the variable of how many plants to include per m<sup>2</sup> of area.

Conduct a higher quantity of plant screening tests to enhance the knowledge of our plants. Research exploring the relationship between plant traits, air quality and well-being are highly desirable. It is also important to report the full list of species including those that did not have an impact on these benefits.

### Scientific refereed publications

None to report

## Intellectual property/commercialisation

No commercial IP generated

### References

Bratman, G. N. et al. (2015) The benefits of nature experience: Improved affect and cognition, Landscape and Urban Planning 138: 41–50

Bringslimark et al. (2009) The psychological benefits of indoor plants: A critical review of the experimental literature, Journal of Environmental Psychology 29: 422–433

Dzierżanowski K, et al. (2011) Deposition of partic- ulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int J Phytoremediation;13(10):1037–46.

Hartig, T., Evans, G. W., Jamner, L. D., Davis, D. S., & Ga<sup>°</sup>rling, T. (2003). Tracking restoration in natural and urban field settings. Journal of Environmental Psychology, 23, 109–123.

Kaplan, S. (1995). The restorative benefits of nature: toward an integrative framework. Journal of Environmental Psychology, 15, 162–182.

Kim, K. J. et al. (2008) Efficiency of Volatile Formaldehyde Removal by Indoor Plants: Contribution of Aerial Plant Parts versus the Root Zone, J. AMER. SOC. HORT. SCI. 133(4):521–526.

Korpela, K. et al. (2017) Nature at home and at work: Naturally good? Links between window views, indoor plants, outdoor activities and employee well-being over one year, Landscape and Urban Planning 160: 38–47

Liu, Y.-J. (2007) Which ornamental plant species effectively remove benzene from indoor air? Atmospheric Environment 41: 650–654

Morton et al. (2017) Seeing our self reflected in the world around us: The role of identity in making (natural) environments restorative, Journal of Environmental Psychology 49: 65-77

Orwell, R. L. (2004) REMOVAL OF BENZENE BY THE INDOOR PLANT/ SUBSTRATE MICROCOSM AND IMPLICATIONS FOR AIR QUALITY, *Water, Air, and Soil Pollution* 157: 193–207

Torpy, F. R. et al. (2013) Do indoor plants contribute to the aeromycota in city buildings? Aerobiologia 29: 321-331

Treesubsuntorn, C. Thiravetyan, P. (2012) Removal of benzene from indoor air by Dracaena sanderiana: Effect of wax and stomata, Atmospheric Environment 57: 317-321

Ugrekhelidze, D. et al. (1997) Uptake and Transformation of Benzene and Toluene by Plant Leaves, ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY **37**, 24–29

USEPA, (2007) The EPA Cost of Illness Handbook U.S. Environmental Protection Agency, Washington, D.C (2007)

Wood, R. A. (2006) THE POTTED-PLANT MICROCOSM SUBSTANTIALLY REDUCES INDOOR AIR VOC POLLUTION: I. OFFICE FIELD-STUDY, *Water, Air, and Soil Pollution* 175: 163–180

Xu, Z. et al. (2011) Formaldehyde removal by potted plant-soil systems, Journal of Hazardous Materials, 192: 314-318

Yang, D.-S. et al. (2009) Screening Indoor Plants for Volatile Organic Pollutant Removal Efficiency, HORTSCIENCE 44(5):1377–1381.

### Acknowledgements

The team would like to thank the expert panel without whose generosity with time and intellectual property this project would not have been possible. In addition, Ben Peacock, Lucy Jackson, Alexis Clarke, Alex Marshall and Claire Tindale-Penning all contributed ideas and useful insights in the development of the review and index. All errors and omissions remain the authors.

### **Appendices**

Appendix 1: Holistic literature review on the benefits of plantsAppendix 2: Organic compound removal rate meta-analysisAppendix 3: List of plants per revoval categoryAppendix 4: Benefit table – for literature review

### Appendix 1: Holistic literature review on the benefits of plants

The purpose of this review is to provide a holistic overview of the research exploring the benefits of plants with a particular interest in a benefit for indoor spaces. The review is separated into two sections based on the benefit: Air Quality or Wellbeing, with each of them, subdivided in response to the literature analysis.

### Methodology

For the analysis of the relevant literature, we adopted the methodology of Bringslimark et al. (2009) comparing papers based on the following characteristics: study subjects, methodology, exposure to stimuli, outcome measure, and findings. The approach was expanded by including the project's scope (indoor, outdoor), the scale (small, medium, large) and the description of the plants in terms of species, age and soil characteristics as reported by the authors.

### Delimiting relevant literature for academic rigour

We located the material for review through standard methods including electronic databases and snowballing (e.g. one paper referring to another). To enhance the reliability of the data, we focused on research papers, conference proceedings and official reports with a clear experimental or a quasi-experimental methodology. Furthermore, we assessed the methodology to ensure study established a baseline level by the inclusion of a no-plant control or a repeated measures approach (before vs. after plant treatment). Informal publications such as science communication magazines, papers and blogs were excluded from the study.

### Literature analysis

The papers were categorised into two broad benefits: air quality and well-being. In particular, air quality was defined as studies assessing a plant's ability to affect the concentration of airborne compounds (inorganic and organic compounds) and/or particulate matters (PM). Meanwhile, well-being was defined as any direct (i.e. improved mood, concentration) or indirect benefit (i.e. productivity, prosocial behaviour) that could be attributed to the presence of plants. Based on the details above, a total of 101 articles were included (43 for air quality, 57 for well-being and 1 for both). Of these, the data of 76 articles were read from the original source while the remaining articles (25) were included from a secondary source. In the latter cases, the original source could not be found within the project's timeframe and the secondary source was detailed enough to meet the information criteria as described above. These studies were summarised and included from reviews.

For the case of air-quality, we also enhanced the existing literature by conducting a meta-analysis. In general terms, this comprises a compilation and re-analysis of removal rates reported by previous authors. This analysis was conducted to strengthen the index development and recommendations provided by the expert panel For more details on the methodology of this meta-analysis please refer to Appendix 2.

### Indoor air quality review

Over the last 35 years, researchers have accumulated evidence that plants can improve our indoor air quality (Guieysse et al. 2008; Girman et al. 2009; Hartig et al. 2014). This direction of research began in the 1980's when Wolverton et al. (1984) showed that plants had the ability to remove formaldehyde. Since then, research has expanded to include removal capacity for other airborne contaminants such as PM (i.e. Tiwary et al. 2009; Beckett et al. 2000; Ottelé et al. 2010), CO2 (Fujii et al. 2005; Park et al. 2010; Makido et al. 2012), NOx (Fujii et al. 2005) and volatile organic compounds (VOC) such as benzene, toluene, trichloroethylene (TCE), and xylene amongst many others (Wolverton et al. 1989, 1993; Wood et al. 2006; Tarran et al. 2007; Wetzel & Doucette 2015).

In general terms, these studies indicate that plants can remove 75%-90% of pollutants depending on the plant and the specific contaminant being assessed. This research has earned plants a the reputation of an affordable bioremediation system that can support mechanical systems that remove pollutants from indoor air (Tarran et al. 2007; Pipal et al. 2012). For example, air filtration systems studied by Shaughnessy et al. (1994) were unsuccessful in removing formaldehyde, whereas various studies included in this review highlight the ability of different plant species to provide this service. However, most results have been achieved within the controlled setting (sealed chamber) and by analysing each contaminant separately. Field studies are limited and often show more conservative numbers of 10-15% (Pegas et al. 2012) making some researchers believe that the change is of little benefit (Girman et al. 2009).

This review assessed 43 different studies which met the academic rigour criteria described in the methodology. Figure 1 summarises the findings of these studies and how our understanding of the benefit of plants has evolved over the past 35 years. In general terms, the research topics can be subdivided into four categories. The air quality review is divided into four subsections in response to these four categories:

- 1. Uptake mechanism of organic and inorganic compounds: Studies which explored the strategies through which the plant and its root system are able to purify the air.
- 2. Compound removal response to local conditions: Studies which explored the external factors influencing removal rates (i.e. light levels, temperature, concentration or airborne molecules, etc).
- 3. Plant species screening for airborne compound removal rates: where the key objective of the study was to compare the differences amongst plant species.
- 4. Particulate Matters (PM): Studies exploring the elements determining the variation of dust or PM in response to plant presence.

Table 1 summarises the number of articles that explore each category as well as the specific contaminant used for their study. Some studies addressed more than one of the above-mentioned topics and or contaminants.

When relevant, species' contaminant removal rates for airborne compounds were collated for the meta-analysis. The analysis was limited to the contaminants with enough data. For instance, ozone, NOx and SOx were addressed by a limited number of studies and a small number of plant species and were thus excluded from the meta-analysis. Meanwhile, PM studies have been separated into a different section as they respond to different mechanisms of the plant. The results of this analysis are briefly discussed in subsection 3 while the complete meta-analysis is available in Attachment 2.

Table 1: Category of study, authors and number of studies for each contaminant

| Measured ele                   | ment         |                                     |                                                                                                                                                                         |    |
|--------------------------------|--------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Inorganic                      | CO2          | Uptake mechanisms by soil or leaves | (Irga et al. 2013)                                                                                                                                                      | 6  |
| Compounds                      |              | Removal response to local condition | (Fujii et al. 2005; Park et al.<br>2010; Pegas et al. 2017; Torpy                                                                                                       | -  |
|                                |              | Plant screening                     | (Torpy et al. 2014)                                                                                                                                                     |    |
|                                | ΝΟχ          | Removal response to local condition | (Euiii et al. 2005)                                                                                                                                                     | 1  |
|                                | Ozone        | Removal response to local condition | (Abbass et al. 2017)                                                                                                                                                    | 2  |
|                                | 020110       | Plant screening                     | (Papinchak et al. 2009)                                                                                                                                                 | 1  |
| Organic<br>Compounds           | Formaldehyde | Uptake mechanisms by soil or leaves | (Kim et al. 2008; Aydogan &<br>Montoya 2011)                                                                                                                            | 4  |
| (Part A)                       |              | Plant screening                     | (Wolverton et al. 1984; Kim et al. 2010)                                                                                                                                |    |
|                                | Aldehydes    | Uptake mechanisms by soil or leaves | (Tani & Hewitt 2009)                                                                                                                                                    | 1  |
| Organic                        | TVOC         |                                     | Wetzel & Douchette 2015                                                                                                                                                 |    |
| Compounds<br>(Part B -<br>VOC) | Benzene      | Uptake mechanisms by soil or leaves | (Ugrekhelidze et al. 1997; Wood<br>et al. 2002; Orwell et al. 2004;<br>Treesubsuntorn & Thiravetyan<br>2012; Pegas et al. 2012; Torpy<br>et al. 2013; Irga et al. 2013) | 10 |
|                                |              | Removal response to local condition | (Orwell et al. 2004)                                                                                                                                                    |    |
|                                |              | Plant screening                     | (Wolverton et al. 1989; Liu et al. 2007; Yang et al. 2009)                                                                                                              |    |
|                                | Toluene      | Uptake mechanisms by soil or leaves | (Ugrekhelidze et al. 1997; Pegas<br>et al. 2012; Kim et al. 2014)                                                                                                       | 6  |
|                                |              | Removal response to local condition | (Orwell et al. 2006; Sriprapat et al. 2014)                                                                                                                             |    |
|                                |              | Plant screening                     | (Yang et al. 2009; Sriprapat et al. 2014)                                                                                                                               |    |
|                                | Xylene       | Uptake mechanisms by soil or leaves | (Kim et al. 2014)                                                                                                                                                       | 4  |
|                                |              | Removal response to local condition | (Orwell et al. 2006; Sriprapat et al. 2014)                                                                                                                             |    |
|                                |              | Plant screening                     | (Yang et al. 2009; Sriprapat et al. 2014)                                                                                                                               |    |
|                                | TCE          | Plant screening                     | (Wolverton et al. 1989; Yang et al. 2009)                                                                                                                               | 2  |
|                                | Octane       | Plant screening                     | (Yang et al. 2009)                                                                                                                                                      | 1  |
|                                | n-hexane     | Plant screening                     | (Wood et al. 2002)                                                                                                                                                      | 1  |
| Particulate Ma                 | atter        | Particle capture mechanisms         | (Terzaghi et al. 2013; Przybysz<br>et al. 2014; Gawronska &<br>Bakera 2015: Chen et al. 2017)                                                                           | 9  |
|                                |              | Local conditions                    | (Lohr & Pearson-Mims 1996;<br>Tiwary et al. 2009; Wania et al.<br>2012; Chen et al. 2017)                                                                               | -  |
|                                |              | Plant screening                     | (Lin et al. 2012; Sæbø et al.<br>2012)                                                                                                                                  |    |
| Risks                          | Aeromycota   | No significant effect               | (Fjeld 2002; Torpy et al. 2013;<br>Irga et al. 2013)                                                                                                                    | 3  |
|                                | VOC emission | Emission                            | (Georgieva et al. 2005)                                                                                                                                                 | 1  |



Figure 1: Timeline of research insights

### UPTAKE MECHANISMS OF ORGANIC AND INORGANIC COMPOUNDS

Wolverton et al. (1989; 1991; 1993) were not only the first to research the potential use of plants for indoor air quality, but also the first to suggest that the process could be regulated by the plant and the microorganisms associated with the soil. It was later confirmed that microorganisms in the root system as responsible for as much as 80% or the removal efficiency of a plant (Kim et al. 2008; Orwell et al. 2004). More specifically, species with a higher proportion of gram-negative bacteria can remove organic compounds more effectively (Wolverton & Wolverton 1993). Gram-negative bacteria (i.e. *Pseudomonas*) are characterised by having a cell wall formed by peptidoglycan and have been previously reported for their effectivity degrading organic chemicals (Wolverton & Wolverton 1993; Guieysse et al. 2008; Pipal et al. 2012).

Kim et al. (2014), analysed this relationship through a limited number of plant species (n=8) finding that similarly-sized individuals of the same species, can increase their removal efficiency if they are transplanted into bigger pots. This allows the root system to expand, thus, the effect is correlated to the root size, not the pot size. Similarly, the efficiency increases through time suggesting that the microorganisms adapt to the contaminant enhancing their own ability to metabolise the contaminant (Wolverton & Wolverton 1993). This is in line with (Torpy et al. 2013) who claim that biostimulation resulted in a 15% increase of benzene removal rates.

Hydroponic systems are also effective mediums for the growth of microorganisms responsible for inorganic and organic compound removal (Irga et al. 2013; Aydogan & Montoya 2011). Shifting from potting soil to hydro culture medium will shift the removal efficiency of the species. For instance, *Syngonium podophyllum* grown under a hydroponic system led to higher CO2 removal but was also less effective for benzene (Irga et al. 2013). The efficiency may also vary depending on the substrate analysed. for instance, activated carbon is the best medium for formaldehyde removal (Aydogan & Montoya 2011).

The key role of the plant itself is primarily to keep that microbiota alive; by itself, the soil system is prone to exhaustion within 2 weeks without the plant (Orwell et al. 2004). In addition to the soil, the plants themselves also have an ability to uptake contaminants (~20% of total uptake) (Tani & Hewitt 2009). In particular, Treesubsuntorn & Thiravetyan (2012) found that the number of stomata on the leaf surface is correlated with the ability of *Dracaena sanderiana* to remove benzene. This was also explored by Ugrekhelidze et al. in 1997 who found that younger leaves of *Acer campestre, Malus domestica*, and *Vitis vinifera* are more effective in removing toluene and benzene. In a more recent study, the presence of hexadecanoic acid in the wax of the leaves was highlighted as the most plausible explanation for toluene and ethylbenzene adsorption (Sriprapat et al. 2014). For formaldehyde, the activity is mediated by the formaldehyde dehydrogenase from the leaves (Xu et al. 2011).

For inorganic compounds, research on the uptake mechanisms by plants is sparse. Fujii et al. (2005) indicate that vegetation might be also used to remove  $CO_2$  and other inorganic air emissions (e.g. NOx, Sox, CO). But the effectiveness might depend on the local conditions.

### COMPOUND REMOVAL RESPONDS TO LOCAL CONDITIONS

It is clear that removal rate will vary depending on the species and the contaminant in question, but there are also other factors mediating the response based on local conditions. For instance, the removal rate changes based on the concentration of the contaminant (Orwell et al. 2006). In this study, Orwell et al. screened 2 different species at four different concentrations. He highlighted the plant's ability to remove toluene and xylene at 'high' (10ppm) and 'low' (0.20ppm) concentrations,

however, the removal rate varied accordingly showing slower removal rates at lower concentrations. The 'low' concentration of this study is equivalent to levels that would be commonly found in office spaces, while the 'high' concentrations correspond to levels where the occupants will show sick building syndrome symptoms. The observed phenomenon can explain the differences between studies conducted within chambers and field experiments in schools and office settings.

 $CO_2$  absorption is mediated by photosynthesis (Park et al. 2010; Fujii et al. 2005; Torpy et al. 2014). Thus, it varies through the seasonality and in response to temperature. Fujii et al. (2005) indicate that for *Juniperus conferta*, is most efficient when the temperature is between 30-35 °C. Similarly, they found that the same plant will absorb the most amount of  $CO_2$  during spring and early summer when the removal rates are approximately five times higher than that of autumn or winter. This observation is supported by those of other authors stating that growing plants are the most effective removing  $CO_2$ . Removal rates of  $CO_2$  also vary in response to light (Park et al. 2010; Torpy et al. 2014). In general terms, the light requirements by each plant are correlated to the light levels at which they will be most effective in removing  $CO_2$  (Torpy et al. 2014).

Finally, Park et al. (2010) suggest that, for CO<sub>2</sub> removal, the leaf area is also an important element as the surface of gas exchange increase (n=5 species), however, this relationship was not verified by our meta-analysis comparing 10 different species. We would suggest that size is of importance within the same species as it increases the surface of air exchange. Further research would be needed to significantly expand the number of species that have been screened for CO<sub>2</sub> and to explore the removal rate changes with increased leaf area within individuals of the same species.

For VOC, authors have found that removal rates are active through night and day with only a slight change of efficiency (Orwell et al. 2004). This can be explained by the microorganisms in the soil, which are active through 24 hours, meanwhile, the aerial portions of the plant will vary their contaminant removal rates in response to light. Light causes the stomata in the leaves to open (Abbass et al. 2017), thus enabling the plant to remove VOC and ozone (Treesubsuntorn & Thiravetyan 2012; Abbass et al. 2017). In a laboratory experiment, Sriprapat et al. (2014) found that plants respond to artificial light in a similar way than to natural light.

### PLANT SPECIES SCREENING

When a plant is exposed to a contaminant, each plant may or may not uptake the contaminant. For instance, Liu et al. (2007) found 23 species (out of 73 species screened) that did not alter benzene concentration. As explained before, this depends upon the specific characteristics of the plant (number of stomata), the type of microorganisms associated with its root system (gram-negative bacteria) and the local conditions (i.e. temperature, light, etc).

In 2008 Kim et al. explored if the formaldehyde removal efficiency of various indoor plants was correlated with the plant typology. More specifically, they screened 86 plant species and categorised them as Korean native plants, ferns, herbaceous foliage plants, woody foliage plants and herbs. Of these, they stated that ferns were the most effective removalists. Figure 2 corresponds to a visualisation created by our research team to visualise the effect reported by Kim et al. (2008); we found that, although some fern species do showcase the largest removal ability, it is not enough to conclude that plant typology is related to removal efficiency. Further research would be needed to further explore the relationship between plant typology and removal abilities. Furthermore, a similar study would need to be conducted with other contaminants.



Figure 2: Formaldehyde removal rate based on plant typology. This figure draws upon the research by Kim et al. (2008)

### Air quality Meta-analysis, a summary of Attachment 2

The removal rates of 15 different studies were compiled and re-analysed. These studies specifically reported removal rates for  $CO_2$ , formaldehyde and VOC. More specifically, VOC included within the study are benzene, toluene, octane, TCE and xylene. The specific objective of the meta-analysis was to guide the research team and panel of experts into the best strategies to develop a the plant-life balance index. This was achieved through the following questions:

- 1) given individuals of the same species, what is the relationship between the removal rates of different contaminants?
- 2) Is there a relationship between the size of a plant and their removal rate?

In total, 130 different plant species have been screened for at least one of the aforementioned contaminants. Table 2 indicates the number of species screened for each contaminant with 99 species emerging from two key studies: Yang et al. (2009) measured the removal rate of 28 different species for five different VOC and Kim et al. (2008) measured the effectivity of formaldehyde removal of 86 different indoor plant species.

Table 2: Number of species screened for each contaminant in the meta-analysis

| Contaminant    | Formaldehyde | Benzene | Toluene | TCE | Octane | Xylene | CO <sub>2</sub> |
|----------------|--------------|---------|---------|-----|--------|--------|-----------------|
| No. of species | 91           | 51      | 36      | 34  | 28     | 28     | 10              |

For full details on the meta-analysis please refer to the Appendix 2. For a list of plants and their removal category please refer to Appendix 3.

### How many plants should I use?

Different authors recommend different numbers of plants per floor area. These differences are expected as they are based on a number of species studied as well as the specific contaminant screened. Below is a brief list of the recommended levels by different authors. Subsequently, this research critically assessed the rationale behind the reported set of recommendations and then provided our own recommendation based on the BASEline.

### Gathering researcher's recommendations.

- 70 plants in a 167m2 house to remove formaldehyde (Wolverton et al. 1984); equivalent to 1 high removalist per 2.2 m2.
- 1 small plant per 1.8m2 to clean ozone (Abbass et al. 2017)
- 1 highly efficient removalist per 10m2 to remove benzene (Liu et al. 2007)
- 1 plant per 9.2m2 to reduce benzene, PM and CO<sub>2</sub> (Pegas et al. 2012).

Aside from Pegas et al. (2012), the recommendations provided come directly from the author's research. They were calculated based the most efficient species assessed in sealed chambers, thus generating recommendations under the assumption that every plant will be a 'high' removalist. Other assumptions vary from one study to the next.

Wolverton et al. (1984) assumed a typical house size (167m2), calculated the amount of formaldehyde that will be emitted by a new house (based on average formaldehyde concentration of  $240\mu g/m^3$ ), added emissions through resident's activity (i.e. cooking) and calculated the number of spider plants (*Chlorophytum related*) needed to meet the purification needs of that household. Their recommendation is equivalent to one formaldehyde high removalist plant every  $2.2m^2$  for a new home. Older houses would require fewer plants or would allow for a mixture or low, medium and high removalist species to achieve similar results.

This level of detail was not considered by the remaining studies. Abbass et al. (2017) and Liu et al. (2007) assumed a room with a 2.5m in height but did not consider the typical emissions of said room and the activities that occur within. Abbass et al. (2017) recommendation are based on low and high ozone removalists based on a 0.9-9% removal respectively. Meanwhile, Liu et al. 2007 are based on the length of time (under 5 hours) that the top 10 benzene removalist species take to purify low concentrations of benzene. screened different plant species within a sealed chamber. Thus, we would recommend at a minimum, the double amount of plants.

In contrast, Pegas et al. 2012 designed their study based on recommendations by the Associated Landscape Contractors of America. The study was conducted in a single classroom with 25 students over a nine-week period. The first three weeks were used to establish a pollution baseline while the remaining six weeks plants were introduced. The plants used in this study were all highly efficient removalists as per Wolverton et al. (1989, 1993). The results reported for VOC are more conservative than studies in sealed chambers. We will take a closer look at one of the values monitored. Australian standards recommend that indoor levels of CO2 are maintained under 600ppm. During a real-life experiment, Pegas et al. (2012) found that a single plant every  $9m^2$  removed 45% of CO<sub>2</sub> in a classroom (from 2004+/-580 to 1121ppm+/-600 of CO2). The mean concentration of CO<sub>2</sub> during the treatment period is still above recommended air quality standards indicating that two to three plants per  $9m^2$  might be a better recommendation given a classroom setting. These new numbers would also result in higher purification rate for benzene and toluene.

### Based on the BASEline

Given the literature assessed to this date, and assuming that only highly efficient removalists are chosen, the research team would recommend **1 plant every 2.2m2 to remove formaldehyde and 1 plant every 3m2 to remove VOC which would result in a final number of approximately 0.80 plants per m**<sup>2</sup>. However, given the current state of research, we know of at least plant species that simultaneously remove both contaminants, as such, the number above is high. We also know that there is no correlation between formaldehyde and VOC removal rates for a plant; there are slim chances that a single plant will be high removalists for both contaminant. Considering both factors,

the research team suggest that, as a rule of thumb, **one high removalist plant be introduced every 2m**<sup>2</sup>.

### PARTICULATE MATTER

PM is a widespread air pollutant, consisting of a mixture of solid and liquid particles suspended in the air (dust is an example). As their physical and chemical characteristics vary widely, they are usually described in terms of the mass concentration of particles with a diameter of less than 10  $\mu$ m (PM<sub>10</sub>), fine particles with a diameter of less than 2.5  $\mu$ m (PM<sub>2.5</sub>) and ultrafine particles (UFP) with a diameter less than 0.1  $\mu$ m.

Using plants as a PM removal strategy has been tested in many studies. For instance, within an indoor setting, (Lohr & Pearson-Mims 1996) found that a room with plants had 1 mg lower PM levels per m<sup>2</sup> than a room without plants. Researchers have also made an effort to identify the species best species to use to remove PM of diverse sizes. Lin et al. (2012) identified *Cupresus leylandii* and *Pinus sylvestris* to be the most effective filters out of the species included in their study whereas *Pinus, Taxus, Stephandandra incisa* and *Betula pendula* were highlighted as efficient by (Sæbø et al. 2012).

The particles are caught within the surface of the leaves and its wax (Dzierzanowski et al. 2011). The composition of particles captured also changes in response to these characteristics. Species that remove high levels of large PM (PM<sub>10</sub>) generally have large amounts of trichomes and/or deep grooves that capture the particles tightly (Chen et al. 2017). Meanwhile, the wax in the leaves traps the UFP (Gawronska & Bakera 2015) through PM cuticular encapsulation (Terzaghi et al. 2013). Whereas the leaf area is not directly correlated with PM removal when comparing different species, a larger surface of a plant with the necessary leaf structure would be able to capture more particles before reaching a saturation point (Przybysz et al. 2014; Chen et al. 2017).

The effectiveness also depends on the local conditions. For instance, in a study conducted within a classroom, the plants that were placed in active areas (i.e. near the door) capture higher amounts of PM than those placed in the room corner (Lohr & Pearson-Mims 1996). It is highly accepted that plants improve the indoor and outdoor air by removing PM. Researchers modelling the effects at larger scales have found that the effects could help prevent at least two lives each year (Tiwary et al. 2009)

However, researchers also recommend proceeding with caution as, under different conditions, the plant could end up adding more PM. For example, when the particles are released as the wind changes strength or direction (Chen et al. 2017) or by reducing air speeds ultimately causing PM to remain in the space (Wania et al. 2012).

### AIR QUALITY RISKS OF INTRODUCING INDOOR PLANTS

One of the elements preventing the introduction of indoor plants is the perceived risk of plants increasing the fungi spores in the air leading to respiratory illness. Elevated counts of fungi within enclosed settings has been linked to respiratory illness and sick building syndrome (Engelhart et al. 2009). Some authors have proposed that indoor plants can studies have proposed indoor plants as plausible sources of fungi (Meyer et al. 2005; Takeda et al. 2009). The reviewed literature states that there is no evidence to suggest that healthy indoor plants increase the aeromycota levels (Fjeld 2002; Torpy et al. 2013; Irga et al. 2013). This highlights the importance of providing a good level of care to the plant species by providing sufficient amount of light and water as per the species requires.

Similarly, Georgieva et al. (2005) state that some species may contain VOCs in their flowers or leaves releasing them into the air. This study was performed on five Gentiana species of which 3 contained

low concentrations of aliphatic hydrocarbons in their flowers. This statement is counterbalanced by the wealth of literature included in this and other reviews. In short, the uncertainty of some species emitting a small quantity of a VOC is far surpassed by plants ability to remove some of the most noxious contaminants polluting our indoor air.

Although small, these risks do exist, however, they can be easily managed by providing proper basic care to the plant and maintaining a well-ventilated space.

### Wellbeing Review

Research indicates the proximity of plants, natural views or immersion in natural environments provide a diverse range of sensations that cascade into a higher state of well-being. This includes evidence that plants can:

- Improve physical health (Fjeld et al. 1998; Fjeld 2002; Nielsen & Hansen 2007)
- Reduce levels of stress and anxiety stress reduction theory (Ulrich et al. 1991; Dijkstra et al. 2008; De Vries et al. 2013; Ikei et al. 2014)
- Provide a sense of fascination that energises us or activates us attention restoration theory (Kaplan 1995; Nejati et al. 2016)
- Promote sense of social cohesion (De Vries et al. 2013; Wei et al. 2014)

This all results in an enhanced level of self-perceived long-term life satisfaction or well-being (Shoemaker et al. in Bringslimark et al. 2009; Dravigne et al. 2008). Well-being is defined as a consistent state of wellness, satisfaction or contentment that emerges from individual perception of good physical, mental and social condition. It is not a state of perpetual happiness, rather the satisfaction that emerges from enjoying the good times and the confidence that you have the ability to cope with the issues that lie ahead. This is the basis of the salutogenesis theory which encourages processes to identify and support the elements that enhance mental and physical health (Becker et al. 2010; Stickley & Hoare 2015). It is grounded in the belief that health support is a better preventive approach than minimizing risks.

This review began by identifying research which measured any direct (i.e. improved mood, concentration) or indirect (i.e. productivity, prosocial behaviour) benefit that could be attributed to the presence of plants. We identified 53 different studies which met the academic rigour criteria described in the methodology. In general terms, the experiments addressed a wide variety of benefits through diverse experimental designs and measures making any sort of comparison among them difficult. Some of the benefits observed include reduced stress, productivity and creativity, nature restoration, pro-social behaviour, and academic performance. Due to the wide variety of experimental designs and measurement, it is not possible to fully compare the studies based on the benefit addressed.

### Key benefits of nature

The reviewed literature includes 18 studies with research relevant for the inclusion of nature in our outdoor spaces, 33 studies for indoor spaces and 2 relevant for both. These studies included nature simulation experiments, individuals engaging in an immersive experience and passive experience of a natural environment. Passive experience included outdoor view and well-being benefits gained by the presence of indoor plants.

### Nature simulation vs. nature immersion

In 1991, Ulrich et al. exposed people to a set of videos where the first one was designed to put them in a place of enhanced stressed and the second one to relax them through exposure to nature or urban images. They found that nature simulation led to faster recovery from a stressful event, an observation that was measured through self-reported levels of positive emotional state and well as through monitoring their physical tests. Faster stress recovery was also experienced by the participants of an immersive study where the participants went for a walk at a nearby woodland or within an urban environment – besides a road or at the city centre (Hartig et al. 2003; Tyrväinen et al. 2014; Bratman et al. 2015).

Keller et al. (2015) found that while simulation and immersive experiences of nature are both effective for stress relief, immersive experiences are more effective. Immersion in nature also restores peoples ability to concentrate enhancing their productivity. For example, people vacationing in the wilderness, return with a heightened ability to concentrate than people who did not take a time off or visited a city instead (Hartig et al. 1991 in Kaplan 1995). This supports the concept of forest bathing a practice to enhance our emotional wellbeing (Korpela et al. 2014) or to aid the recovery processes of patients (Mao et al. 2017).

### The effects of Indoor plants

The reviewed literature shows a strong correlation between the presence or availability of indoor plants and enhances productivity. This is mostly analysed through study subject's task performance with tasks varying from proofreading, shape recognition tasks, sorting tasks, memory assessments, etcetera. Their conclusions include:

- 1. Higher rate of correct responses completing (Shibata & Suzuki 2002)
- 2. Indoor plants lead to 12 % faster reaction time while completing a shape recognition task. (Lohr & Pearson-mims 2000)
- 3. Introducing plants within a classroom can increase 11-14% performance in math and science (Daly et al. 2010).
- 4. 12% higher consideration of long-term goals (Matsuoka 2010)
- 5. 5% better attention capacity leading to better performance in high concentration tasks i.e. proofreading, multitasking (Raanaas et al. 2011)

The increased productivity or performance listed above is partly influenced by plants presence leading to 15-35% lower rates of sick leave and symptoms within the classroom and office settings (Fjeld et al. 1998; Fjeld 2002; Smith et al. 2011) and their ability to reduce tiredness or fatigue (Fjeld et al. 1998). In particular, Raanaas et al. (2011) found that the restorative power of indoor plants is equivalent to a 5-minute break. This can lead to positive experiences of the space and higher levels of satisfaction (Dravigne et al. 2008). It has been theorised that these positive effects are related to the presence of fractal patterns in nature and the ability of these patterns to restore our attention, however, in experimental settings, plants outperform other sources of fractal patterns -i.e. geometrical forms (Shibata & Suzuki 2004; Berto 2005) where sometimes, these patterns result intrusive to the ability of the subject to perform the desired task (Shibata & Suzuki 2004). Furthermore, the positive effect of indoor plants is still present, though to a lower extent, even when the plants are not within sight (Shibata & Suzuki 2002; Shibata & Suzuki 2001 in Bringslimark et al. 2009). The extent of the benefit is mediated by external factors such as how long the individual spends indoors, their individual preferences, the health of the plant amongst others.

### The importance of natural views

Access to windows with natural views can also have significant positive impacts on our physical and mental wellbeing. For instance, in hospital settings, it has been registered that window views are linked to faster recovery rates and an increase in pain tolerance - measured by the length of hospital stay and pain-killers intake by patients (Lohr & Pearson-mims 2000; Park & Mattson 2008).

The benefits are not exclusive to people in recovery but can be perceived across the whole population. For example, students with access to natural views express 20% higher levels of self-discipline (Taylor et al. 2002) and a higher academic performance (Matsuoka 2010) than students without an access to nature views. Meanwhile, nurses with access to a break room with natural view show higher levels of wellbeing, and self-perceived energy levels or restfulness (Nejati et al. 2016). The access to natural views also led to the consideration of long-term goals such as higher rates of
students graduating high school and with college plans (Matsuoka 2010). In this study, the authors compared different high schools and categorised the 'naturalness' level of the views from various windows. When comparing different types of view, both studies highlighted that the more natural the view, the higher the benefits (Matsuoka 2010; Nejati et al. 2016). Furthermore, a sense of being able to leave the built environment and 'step outside' through a balcony showed the highest levels of restorative potential for the nurses rating higher in restorative potential than the presence of indoor plants (Nejati et al. 2016).

#### Vegetation shifting perception of a space

Using vegetation also improves the perception of a space (Aitken & Palmer 1989). White & Gatersleben (2011) found that, when comparing different looks for the same house, houses with green facades were considered more beautiful.

Meanwhile, when plants are placed inside a room, space is regarded as more attractive and this indirectly reduces stress perception of the space (Larsen & Adams 1998; Dijkstra et al. 2008; Smith et al. 2011). These conceptual shifts attributed to plants is the direct mechanism that leads to the increased productivity of office workers, students and academic staff and the faster recovery rates that have been observed in hospital and recovery centre patients (see sections above for specific references). The effect is stronger when the people who use the space participated in the decoration decisions by choosing what to include and where (Knight & Haslam 2010).

### Vegetation leading to social connection

Nielsen & Hansen (2007) found that accessibility to green spaces was correlated to lower obesity index. This effect was not linked to the amount of physical activity performed by the individuals, thus, they propose that the character of the neighbourhood is conducive to outdoor activities. This suggests that the presence of outdoor and indoor greenery can indirectly enhance mental health by leading to higher social cohesion – reduced loneliness (Maas et al. 2009). This concept is supported by Wei et al. (2014) and Zang et al. (2017) who found that people feeling more connected to nature and with a higher well-being showed pro-social behaviour. The participants in this category were described as more empathic, agreeable, friendly and willing to help.

The relationship between nature exposure and pro-sociality was stronger when the participants were exposed to 'beautiful' nature (Zang et al. 2017). The health status of the plant is a key component of defining 'beauty'. For example, a streetscape affected by a plague was negatively correlated with the long-term life satisfaction of the residents (Jones 2017).

# Factors that enhance the benefit

How much we benefit from the experience is mediated by three key factors: the length of the nature-based experience (Hartig et al. 1991 in Kaplan 1996), the nature of the activity - passive vs. active (Korpela et al. 2017) and our individual preferences as determined by our identity (Hartig et al. 2003; Morton et al. 2017). For instance, Tyrväinen et al. (2014) found that visitors to an urban park and a woodland were equally recovered from stress after their visit, however the visitors of the woodland self-perceived the visit as more restorative than the remaining participants. In opposition, Gilchrist et al. (2015) found that longer visits to a natural environment are more effective for long-term satisfaction than shorter but more frequent visits to urban parks.

In urban settings, quantity and quality of greenery are also important. The quality of the green space was found to be stronger in mediating an increase in perceived general physical and mental health; the ability of the green space to aid in stress reduction and conducive to social activities were the stronger mediators of this relationship (De Vries et al. 2013). Thus, spaces that are restorative,

reduce stress and are conducive to social interaction (i.e. gardening) are regarded as 'quality' spaces. In terms of vegetation choices, a study on a green roof highlighted a bias for vegetation of higher structural complexity and species diversity as the preferred characteristics for space (Lee et al. 2014).

#### How many plants should I use?

Through the reviewed literature, the number of plants used in each study varied widely from a single plant to 30 plants in a single room. When considering plants per floor area ratio, the relationship varied from 1-14 plants per 10m<sup>2</sup>. To the best of our knowledge, no research to date has been conducted to develop a general guideline of the ideal number of plants to promote the highest amount of well-being. That type of study would be highly complex it is known that the benefits are tightly correlated to our identity and the number of plants required to saturate well-being will vary based on personal preferences.

Responding to BASEline research, we know that there is a directional trend of 'plants increase wellbeing' under an assumption that more plants will produce higher benefits until the number of plants reaches the limit of what the individual likes. Thus, as a baseline, we began by simulating what is the maximum number of plants that would be practical to introduce to space and recommend 1 medium-sized plant every  $2m^2$ . This recommendation is very similar to the one proposed for airquality with the difference that it focuses more emphasis on the size of the plant allowing the number of plants to change in response to the structural complexity of the plants introduced into said space. Finally, we acknowledge that this number should vary in response to personal preferences and encourage people to introduce plants based on their personal preferences adding less or more plants that the recommended baseline.

#### Conclusion

Wellbeing is a complex concept determined by a wide range of personal characteristics and the location. In alignment with salutogenesis theory, wellbeing can be promoted if people believe that they understand a problem (comprehensibility), feel that they have resources available (manageability), and possess internal (i.e. motivation) and external (i.e. social cohesion) mechanisms to cope. Thus, we conclude that the inclusion of plants at indoor and outdoor spaces is an effective strategy to promote well-being. Either present at an outdoor or an indoor setting, plants are able to significantly aid the stress recovery process and generate a sense of mental restoration. Indirectly, their air quality purification ability

This response can be explained by the innate emotional affiliation we have with nature; a deeprooted connection that has evolved throughout human history (Biophilia). There is a general trend that higher quantity of plants will enhance well-being by providing sensorial stimuli that remind us of that deep connection with nature; however, there is currently no available research that has successfully explored the relationship between the number of plants and well-being. Exploring this topic is challenging as well-being effects are affected by personal preferences. One common thread is the requirement of 'high' quality green spaces. In general terms, it should possess a high level of **structural complexity** and **diversity**, while remaining coherent. From the literature the following directional trends emerged:

- a. A plant is better than a picture of a plant, which is better than a plant colour, which is better than nothing.
- b. More plants are better than fewer plants.
- c. More diverse is better than less diverse (the relationship between different plants, shapes) but dependent of a cohesive look. Organised complexity.
- d. Green foliage is better than other foliage.
- e. Flowers are better than no flowers.
- f. Air quality-plant relationship are valid for the app in indoor spaces, well-being-plant relationships are valid for outdoor and indoor spaces.

# References

- Abbass, O.A., Sailor, D.J. & Gall, E.T., 2017. Effectiveness of indoor plants for passive removal of indoor ozone. *Building and Environment*, 119, pp.62–70. Available at: http://dx.doi.org/10.1016/j.buildenv.2017.04.007.
- Aitken, J.E. & Palmer, R.D., 1989. The Use of Plants to Promote Warmth and Caring in a Business Environment,
- Aydogan, A. & Montoya, L.D., 2011. Formaldehyde removal by common indoor plant species and various growing media. *Atmospheric Environment*, 45(16), pp.2675–2682. Available at: http://dx.doi.org/10.1016/j.atmosenv.2011.02.062.
- Becker, C.M., Glascoff, M.A. & Felts, W.M., 2010. Salutogenesis 30 Years Later: Where do we go from here? Origins of Salutogenesis. *Electronic Journal of Health Education*, 13, pp.25–32.
- Beckett, P., Smith, F. & Taylor, G., 2000. Particulate pollution capture by urban trees: effect of species and windspeed. *Global Change Biology*, 6, pp.995–1003.
- Berto, R., 2005. Exposure to restorative environments helps restore attentional capacity. *Journal of Environmental Psychology*, 25, pp.249–259.
- Bratman, G.N. et al., 2015. Landscape and Urban Planning The benefits of nature experience: Improved affect and cognition. *Landscape and Urban Planning*, 138, pp.41–50. Available at: http://dx.doi.org/10.1016/j.landurbplan.2015.02.005.
- Bringslimark, T., Hartig, T. & Patil, G.G., 2009. The psychological benefits of indoor plants: A critical review of the experimental literature. *Journal of Environmental Psychology*, 29(4), pp.422–433. Available at: http://dx.doi.org/10.1016/j.jenvp.2009.05.001.
- Chen, J. et al., 2017. Indoor simulations reveal differences among plant species in capturing particulate matter. *PloS one*, (May), pp.1–22.
- Daly, J., Burchett, M. & Torpy, F., 2010. *Plants in the classroom can improve student performance*, Sydney.
- Dijkstra, K., Pieterse, M.E. & Pruyn, A., 2008. Stress-reducing effects of indoor plants in the built healthcare environment: The mediating role of perceived attractiveness. *Preventive Medicine*, 47, pp.279–283.
- Dravigne, A. et al., 2008. The Effect of Live Plants and Window Views of Green Spaces on Employee Perceptions of Job Satisfaction. *HortScience*, 43(1), pp.183–187.
- Dzierzanowski, K. et al., 2011. Deposition of Particulate Mater of Different size fractions on leaf surfaces and in waxes. *International Journal of Phytoremediation*, 13, pp.1037–1046.
- Engelhart, S. et al., 2009. Childhood hypersensitivity pneumonitis associated with fungal contamination of indoor hydroponics. *International Journal of Hygiene and Environmental Health*, 212, pp.18–20.
- Faber Taylor, A., Kuo, F.E. & Sullivan, W.C., 2002. Views of Nature and Self-discipline: Evidence from inner city Children. *Journal of Environmental Psychology*, 22, pp.49–63.
- Fjeld, T. et al., 1998. The Effect of Indoor Foliage Plants on Health and Discomfort Symptoms among Office Workers. *Indoor Built Environment*, 7, pp.204–209.
- Fjeld, T., 2002. The effect of plants and artificial day-light on the well-being and health of office

workers, school children and health care personnel,

- Fujii, S. et al., 2005. Effects on air pollutant removal by plant absorption and adsorption. *Building and Environment*, 40, pp.105–112.
- Gawronska, H. & Bakera, B., 2015. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. *Air Quality Atmospheric Health*, 8, pp.265–272.
- Georgieva, E. et al., 2005. Comparative analysis of the volatiles from flowers and leaves of three Gentiana species. *Biochemical Systematics and Ecology*, 33, pp.938–947.
- Gilchrist, K., Brown, C. & Montarzino, A., 2015. Workplace settings and wellbeing : Greenspace use and views contribute to employee wellbeing at peri-urban business sites. *Landscape and Urban Planning*, 138, pp.32–40. Available at: http://dx.doi.org/10.1016/j.landurbplan.2015.02.004.
- Girman, J., Phillips, T. & Levin, H., 2009. Critical Review: How Well Do House Plants Perform as Indoor Air Cleaners? In *Proceedings of Healthy Buildings 2009*. pp. 9–12.
- Guieysse, B. et al., 2008. Biological treatment of indoor air for VOC removal: Potential and challenges. *Biotechnology Advances*, 26, pp.398–410.
- Hartig, T. et al., 2014. Nature and Health. Annual Review of Public Health, 35, pp.207–28.
- Hartig, T. et al., 2003. Tracking restoration in natural and urban field settings. *Journal of Enviromental Psychology*, 23, pp.109–123.
- Ikei, H. et al., 2014. The physiological and psychological relaxing effects of viewing rose flowers in office workers. *Journal of Physiological Anthropology*, 33(6), pp.1–5.
- Irga, P.J., Torpy, F.R. & Burchett, M.D., 2013. Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants? *Atmospheric Environment*, 77, pp.267–271. Available at: http://dx.doi.org/10.1016/j.atmosenv.2013.04.078.
- Jones, B.A., 2017. Invasive Species Impacts on Human Well-being Using the Life Satisfaction Index. *Ecological Economics*, 134, pp.250–257. Available at: http://dx.doi.org/10.1016/j.ecolecon.2017.01.002.
- Kaplan, S., 1995. The Restorative benefits of Nature: Toward an Integrative Framework. *Journal of Environmental Psychology*, (1995), pp.169–182.
- Keller, A.A., Fournier, E. & Fox, J., 2015. Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis. *Journal of Environmental Management*, 156, pp.23–30. Available at: http://dx.doi.org/10.1016/j.jenvman.2015.03.017.
- Kim, K.J. et al., 2008. Efficiency of Volatile Formaldehyde Removal by Indoor Plants: Contribution of Aerial Plant Parts versus the Root Zone. *Journal of the American Society of Horticulture Science*, 133(4), pp.521–526.
- Kim, K.J. et al., 2010. Variation in Formaldehyde Removal Efficiency among Indoor Plant Species. *Horticulture Science*, 45(10), pp.1489–1495.
- Kim, K.J. et al., 2014. Volatile Toluene and Xylene Removal Efficiency of Foliage Plants as Affected by Top to Root Zone Size. *HortScience*, 49(2), pp.230–234.
- Knight, C. & Haslam, S.A., 2010. The Relative Merits of Lean, Enriched, and Empowered Offices: An Experimental Examination of the Impact of Workspace Management Strategies on Well-Being and Productivity. *Journal of Experimental Psychology: Applied*, 16(2), pp.158–172.

Korpela, K. et al., 2014. Analyzing the mediators between nature-based outdoor recreation and

emotional well-being. *Journal of Environmental Psychology*, 37, pp.1–7. Available at: http://dx.doi.org/10.1016/j.jenvp.2013.11.003.

- Korpela, K. et al., 2017. Landscape and Urban Planning Nature at home and at work: Naturally good? Links between window views, indoor plants, outdoor activities and employee well-being over one year. Landscape and Urban Planning, 160, pp.38–47. Available at: http://dx.doi.org/10.1016/j.landurbplan.2016.12.005.
- Larsen, L. & Adams, J., 1998. Plants in the Workplace: The Effects of Plant Density of Productivity, Attitudes and Perceptions. *Environment and Behavior*, pp.261–281.
- Lee, K.E. et al., 2014. Living roof preference is influenced by plant characteristics and diversity. *Landscape and Urban Planning*, 122, pp.152–159. Available at: http://dx.doi.org/10.1016/j.landurbplan.2013.09.011.
- Lin, M., Katul, G.G. & Khlystov, A., 2012. A branch scale analytical model for predicting the vegetation collection ef fi ciency of ultra fi ne particles. *Atmospheric Environment*, 51, pp.293– 302.
- Liu, Y. et al., 2007. Which ornamental plant species effectively remove benzene from indoor air ? *Atmospheric Environment*, 41, pp.650–654.
- Lohr, V.I. & Pearson-mims, C.H., 2000. Physical Discomfort may be reduced in the presence of Interior Plants. *Hortechnology*, 10(1), pp.53–58.
- Lohr, V.I. & Pearson-Mims, C.H., 1996. Particulate Matter Accumulation on Horizontal surfaces in Interiors: Influence of foliage plants. *Atmospheric Environment*, 30(14), pp.2565–2568.
- Maas, J. et al., 2009. Social contacts as a possible mechanism behind the relation between green space and health. *Health & Place*, 15, pp.586–595.
- Makido, Y., Dhakal, S. & Yamagata, Y., 2012. Relationship between urban form and CO2 emissions: Evidence from fifty Japanese cities. *Urban Climate*, 2, pp.55–67. Available at: http://linkinghub.elsevier.com/retrieve/pii/S2212095512000132 [Accessed January 15, 2015].
- Mao, G. et al., 2017. The Salutary Influence of Forest Bathing on Elderly Patients with Chronic Heart Failure. *Environmental Research and Public Health Public Health*, 14, p.368.
- Matsuoka, R.H., 2010. Landscape and Urban Planning Student performance and high school landscapes: Examining the links. *Landscape and Urban Planning*, 97(4), pp.273–282. Available at: http://dx.doi.org/10.1016/j.landurbplan.2010.06.011.
- Meyer, H.W. et al., 2005. Molds in floor dust and building-related symptoms among adolescent school children: a problem for boys only? *Indoor Air*, 15(Suppl 10), pp.17–24.
- Morton, T.A., van der Bles, A.M. & Haslam, S.A., 2017. Seeing our self reflected in the world around us: The role of identity in making (natural) environments restorative. *Journal of Environmental Psychology*, 49, pp.65–77. Available at: http://dx.doi.org/10.1016/j.jenvp.2016.11.002.
- Nejati, A., Rodiek, S. & Shepley, M., 2016. Landscape and Urban Planning Using visual simulation to evaluate restorative qualities of access to nature in hospital staff break areas. *Landscape and Urban Planning*, 148, pp.132–138. Available at: http://dx.doi.org/10.1016/j.landurbplan.2015.12.012.
- Nielsen, T.S. & Hansen, K.B., 2007. Do green areas affect health ? Results from a Danish survey on the use of green areas and health indicators. *Health and Place*, 13, pp.839–850.
- Orwell, R. et al., 2006. The potted-plant microcosm substantially reduces indoor air voc pollution: ii.

laboratory study. Water, Air and Soil Pollution, 177, pp.59-80.

- Orwell, R.L. et al., 2004. Removal of Benzene by Indoor plant/substrate microcosm and implications for Air Quality. *Water, Air and Soil Pollution*, 157, pp.193–207.
- Ottelé, M., Bohemen, H.D. Van & Fraaij, A.L.A., 2010. Quantifying the deposition of particulate matter on climber vegetation on living walls. *Ecological Engineering*, 36, pp.154–162.
- Papinchak, H.L. et al., 2009. Effectiveness of Houseplants in Reducing the Indoor Air Pollutant Ozone. *Hortechnology*, 19(June), pp.286–290.
- Park, S.-A. et al., 2010. Comparison of Indoor CO2 Removal Capability of Five Foliage Plants by Photosynthesis. *Kor. J. Hort. Sci. Technol.*, 28(5), pp.864–870.
- Park, S. & Mattson, R.H., 2008. Effects of Flowering and Foliage Plants in Hospital Rooms on Patients Recovering from Abdominal Surgery. *Hortechnology*, 4(October-December), pp.563–568.
- Pegas, P.N. et al., 2017. Could Houseplants Improve Indoor air Quality in Schools ?, 7394(May).
- Pegas, P.N. et al., 2012. Could Houseplants Improve Indoor air Quality in Schools? *Journal of Toxicology and Environmental Health*, A(April 2017), pp.1–27.
- Pipal, A.S. et al., 2012. Role of Plants in Removing Indoor Air Pollutants. *Chemestry of Phytopotentials: Health, Energy and Environmental Perspectives*, (January), pp.5–8.
- Przybysz, A. et al., 2014. Science of the Total Environment Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. *Science of the Total Environment*, 481, pp.360–369.
- Raanaas, R.K. et al., 2011. Benefits of indoor plants on attention capacity in an office setting., 31.
- Sæbø, A. et al., 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment, 427–428, pp.347–354. Available at: http://dx.doi.org/10.1016/j.scitotenv.2012.03.084.
- Shaughnessy, R.J. et al., 1994. Effectiveness of Portable Indoor Air Cleaners: Sensory Testing Results. Indoor Air, 4, pp.179–188.
- Shibata, S. & Suzuki, N., 2004. Effects of an indoor plant on creative task performance and mood. *Scandinavian Journal of Psychology*, 45, pp.373–381.
- Shibata, S. & Suzuki, N., 2002. Effects of the Foliage Plant on task Performance and Mood. *Journal of Enviromental Psychology*, 22, pp.265–272.
- Smith, A., Tucker, M. & Pitt, M., 2011. Healthy, productive workplaces: towards a case for interior plantscaping. *Facilities*, 29, pp.209–223.
- Sriprapat, W. et al., 2014. Ecotoxicology and Environmental Safety Uptake of toluene and ethylbenzene by plants: Removal of volatile indoor air contaminants. *Ecotoxicology and Environmental Safety*, 102, pp.147–151. Available at: http://dx.doi.org/10.1016/j.ecoenv.2014.01.032.
- Stickley, T. & Hoare, M., 2015. A review of the concept of Salutogenesis and its significance for promoting mental health recovery through participatory arts. *Journal of Applied Arts and Health*, 6(1), pp.63–75.
- Takeda, M. et al., 2009. Relationship between sick building syndrome and indoor environmental factors in newly built Japanese dwellings. *Int Arch Occup Environ Health*, 82, pp.583–593.

- Tani, A. & Hewitt, C.N., 2009. Uptake of Aldehydes and Ketones at Typical Indoor Concentrations by Houseplants. *Environmental Science & Technology*, 43(21), pp.8338–8343.
- Tarran, J., Torpy, F. & Burchett, M., 2007. Use of Living Pot-plants to clense Indoor Air Research Review. In Proceedings of Sixth International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings – Sustainable Built Environment. Sendai, Japan, pp. 249–256.
- Terzaghi, E. et al., 2013. Forest Filter Effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. *Atmospheric Environment*, 74, pp.378–384. Available at: http://dx.doi.org/10.1016/j.atmosenv.2013.04.013.
- Tiwary, A. et al., 2009. An integrated tool to assess the role of new planting in PM 10 capture and the human health benefits : A case study in London. *Environmental Pollution*, 157(10), pp.2645–2653. Available at: http://dx.doi.org/10.1016/j.envpol.2009.05.005.
- Torpy, F.R. et al., 2013. Do indoor plants contribute to the aeromycota in city buildings ? *Aerobiologia*, 29, pp.321–331.
- Torpy, F.R., Irga, P. & Burchett, M.D., 2013. Characterization and Biostimulation of benzene biodegradation in the potting-mix of indoor plants. *Applied Horticulture*, 15(November), pp.10–15.
- Torpy, F.R., Irga, P.J. & Burchett, M.D., 2014. Urban Forestry & Urban Greening Profiling indoor plants for the amelioration of high CO 2 concentrations. *Urban Forestry & Urban Greening*, 13(2), pp.227–233. Available at: http://dx.doi.org/10.1016/j.ufug.2013.12.004.
- Treesubsuntorn, C. & Thiravetyan, P., 2012. Removal of benzene from indoor air by Dracaena sanderiana: Effect of wax and stomata. *Atmospheric Environment*, 57, pp.317–321. Available at: http://dx.doi.org/10.1016/j.atmosenv.2012.04.016.
- Tyrväinen, L. et al., 2014. The influence of urban green environments on stress relief measures: A field experiment. *Journal of Environmental Psychology*, 38, pp.1–9. Available at: http://dx.doi.org/10.1016/j.jenvp.2013.12.005.
- Ugrekhelidze, D., Korte, F. & Kvesitadze, G., 1997. Uptake and Transformation of Benzene and Toluene by Plant Leaves. *Ecotoxicology and Environmental Safety*, 29, pp.24–29.
- Ulrich, R.S. et al., 1991. Sress recovery during exposure to Natural and Urban Environments. *Journal of Environmental Psychology*, 11, pp.201–230.
- De Vries, S. et al., 2013. Streetscape greenery and health: Stress, social cohesion and physical activity as mediators. *Social Science & Medicine*, 94, pp.26–33. Available at: http://dx.doi.org/10.1016/j.socscimed.2013.06.030.
- Wania, A. et al., 2012. Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. *Journal of Environmental Management*, 94(1), pp.91–101. Available at: http://dx.doi.org/10.1016/j.jenvman.2011.06.036.
- Wei, J. et al., 2014. An occasion for unselfing: Beautiful nature leads to prosociality. *Journal of Environmental Psychology*, 37, pp.61–72. Available at: http://dx.doi.org/10.1016/j.jenvp.2013.11.008.
- Wetzel, T.A. & Doucette, W.J., 2015. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs). *Chemosphere*, 122, pp.32–37. Available at: http://dx.doi.org/10.1016/j.chemosphere.2014.10.065.
- White, E. V & Gatersleben, B., 2011. Greenery on residential buildings: Does it affect preferences and perceptions of beauty? *Journal of Environmental Psychology*, 31(1), pp.89–98. Available at:

http://dx.doi.org/10.1016/j.jenvp.2010.11.002.

- Wolverton, B.C., Johnson, A. & Bounds, K., 1989. Landscape Plants for Indoor Air Pollution Abatement. , pp.1–27.
- Wolverton, B.C., McDonald, R.C. & Watkins, E.A., 1984. Foliage Plants for Removing Indoor Air Pollutants from Energy-efficient Homes. *Economic Botany*, 38(2), pp.224–228.
- Wolverton, B.C. & Wolverton, J., 1993. Plants and Soil Microorganisms: Removal of Formaldehyde, Xylene and Ammonia from the Indoor Environment. *Journal of the Mississippi Academy of Sciences*, 38(2), pp.11–15.
- Wood, B.R.A. et al., 2002. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. *The Journal of Horticultural Science and Biotechnology*, 77(1), pp.120–129.
- Wood, R.A. et al., 2006. The potted-plant microcosm substantially reduces indoor air voc pollution: I. office field-study. *Water, Air and Soil Pollution*, 175, pp.163–180.
- Xu, Z., Wang, L. & Hou, H., 2011. Formaldehyde removal by potted plant soil systems. Journal of Hazardous Materials, 192(1), pp.314–318. Available at: http://dx.doi.org/10.1016/j.jhazmat.2011.05.020.
- Yang, D.S. et al., 2009. Screening Indoor Plants for Volatile Organic Pollutant Removal Efficiency. *HortScience*, 44(5), pp.1377–1381.
- Zang, Z. et al., 2017. Impact of landscape patterns on ecological vulnerability and ecosystem service values: An empirical analysis of Yancheng Nature Reserve in China. *Ecological Indicators*, 72, pp.142–152.

# Appendix 2: Organic compound removal rate meta-analysis

The literature review, by itself, was unable to respond some of the key questions required to develop the plant-life balance index. Thus, we performed a meta-analisis to re-analyse a large number of studies of varied scope.

#### Methodology

To enhance the understanding of the literature, we took data from relevant research papers for further analysis, we specifically performed an air quality meta-analysis. This analysis compiled all reported plant species, contaminant removal rates, and air volume for studies that utilised a sealed air chamber; when available, we also compiled plant's leaf area, aesthetic category (i.e. foliage, fern, woody), and authors' categorization of the plant as a high, medium, or low contaminant removalist. Studies that did not provide enough information were eliminated from the aggregation. this includes experiments conducted outside of sealed chambers, compounds with insufficient data for analysis (i.e. NOx, aldehyde, ozone), articles reporting aeromycota and PM.

The removal rates reported on the selected 15 studies were compiled and re-analysed. These studies specifically reported removal rates for  $CO_2$ , formaldehyde and VOC. More specifically, VOC studied and included in the meta-analysis are benzene, toluene, octane, TCE and xylene. To ensure that the studies were comparable to each other, we converted the units to  $\mu g/hour/m^3$  of air/m<sup>2</sup> of leaf area. To convert the study units, we ran the database in R Version 3.4.1. This information was used to explore the relationship between removal rates of different contaminants and the relationship between plant size and removal rate. For the meta-analysis, we developed a python program in Jupiter Notebook.

# Categorising plants based on the efficiendy of removal

There are three key studies to determine removal efficiency category. Yang et al. (2009) who measured the removal rate of 28 different species for five different VOC; Liu et al. (2007) who measured benzene removal rates of 73 species, and Kim et al. (2008) who measured the effectivity of formaldehyde removal of 86 different indoor plant species. These studies were used to establish the range of values that determine the efficiency category. In particular, the first study provided a categorization of the plants based on their efficiency to remove total VOC. These values were validated with the second study. The removal efficiency category for formaldehyde was established by the reviewers (Marco Amati, Dominique Hes and Cris Hernandez) utilising the third study as an example. Unfortunatley, to the best of our knowledge, no study has determined said parameters.

#### Results

A total of 130 species have been screened for at least one of the aforementioned contaminants. Table 1 indicates the number of species screened for each contaminant with 99 species emerging from two key studies: Yang et al. (2009) who measured the removal rate of 28 different species for five different VOC and Kim et al. (2008) who measured the effectivity of formaldehyde removal of 86 different indoor plant species.

Table 1: Number of species screened for each contaminant in the meta-analysis

| Contaminant    | Formaldehyde | Benzene | Toluene | TCE | Octane | Xylene | CO <sub>2</sub> |
|----------------|--------------|---------|---------|-----|--------|--------|-----------------|
| No. of species | 91           | 51      | 36      | 34  | 28     | 28     | 10              |

#### Relationship between the removal rates of different contaminants.

In 2009, Yang & Son completed a plant screening of VOC removal efficiency utilising 28 indoor plants. They quantified the removal rates for benzene, toluene, octane, TCE, and a-pinene and, based on these, calculated the total VOC (TVOC) removal efficiency. Lastly, the authors assigned each plant a removal efficiency category based on the TVOC removed by it. Based on this data, we explored the relationship, if any, between the plant's removal ability for different contaminants (Figure 1). We found that there is a clear relationship between most of the assessed VOC. In particular, toluene, benzene and TCE show a linear relationship. The hue of colour on Figure 1 represents the removal efficiency category assigned by Yang & Son (2009). Aside from octane, the categories for TVOC removal efficiency also match with the removal efficiency of individual contaminants. These categories were also compared with the results reported by Liu et al. (2007) study on benzene removal and was found to match.



Figure 1: VOC removal efficiency based on Yang & Son 2009

We then identified species that had also been assessed for formaldehyde finding fourteen species in common (Figure 2). There seems to be no correlation between the removal efficiency of TVOC and formaldehyde, indicating the need for a second removal category based on formaldehyde. This observation was also supported individual assessments exploring the relationship of formaldehyde with benzene (23 species), toluene (22 species) and TCE (20 species).



Figure 2: Comparison between Formaldehyde and VOC removal rates.

Based on the visualisations above, there is an indication that toluene, benzene, TCE and a-pinene can be used as a proxy for TVOC removal. The range of values for each category is available on Table 2. Similarly, the research team proposed a series of ranges to categorise formaldehyde given that there is no research available that has set these parameters. Further research will be needed to ensure the validity of these categories. These ranges were used to create the table in Appendix 3.

| Table 2: Range of remo | al rates for each | removal efficiency categor | rу |
|------------------------|-------------------|----------------------------|----|
|------------------------|-------------------|----------------------------|----|

| Contaminant   | Null | Low       | Medium    | High  | Units for removal             |
|---------------|------|-----------|-----------|-------|-------------------------------|
| used as proxy |      |           |           |       | rate value:                   |
| Toluene       | 0    | 0.1-3.5   | 3.5-5.5   | 5.5+  |                               |
| Bencene       | 0    | 0.1-0.6   | 0.6-2.5   | 2.5+  | µg /hour /m³ of air           |
| TCE           | 0    | 0.1-3.0   | 3.0-5.5   | 5.5+  | /m <sup>2</sup> of leaf area. |
| a-pinene      | 0    | 0.1-4.5   | 4.5-8.5   | 8.5+  |                               |
| Formaldehyde  | 0    | 0.01-2500 | 2500-5500 | 5500+ |                               |

# Relationship between removal rates and plant size.

#### Delimiting size in small, medium and large plants

All data was standarised on removal rate per m<sup>2</sup> of leaf area, however, depending on the size of the plant, you may require a single or multiple plants to gather one m<sup>2</sup> of leaves. To assess the relationship between removal rates and size, we began by estimating the planting density based on the leaf area reported by the authors. We then created a series of ranges for the plantation density to determine the size of the plant (Figure 3).



Figure 3: Plantation density and size category

#### Size analysis

The simplified plant-life balance index proposed for the app development utilises size as a proxy for estimating the number of plants required to gain the maximum air quality benefit possible. Based on the knowledge gathered to this day, research studies evidence that such relationship does not exist; that is, the size of the plant does not influence the contaminant removal efficiency for any of the assessed contaminants (Figure 4). In fact, evidence in the literature review suggests that the number of microorganisms in the soil system (Wolverton & Wolverton 1993; Orwell et al. 2004, 2006; Wood et al. 2006) and the number of stomata on the leaves (Ugrekhelidze et al. 1997; Treesubsuntorn & Thiravetyan 2012) are more important in determining the ability of a plant system to remove noxious compounds from the air.



Figure 4: relationship between contaminant removal rate and plant size

#### Removal rate per species

Figure 5 shows the plant species that have been screened for VOC. It indicates the removal rate as indicated by researchers and for each contaminant. It also highlights the overlap that exists between the species with 28 plants with measurments for five different contaminants and the remaining species screened for one or two contaminants.

# Conclusion

Emerging from this meta-analysis we can conclude:

- 1) The relationship between different contaminants:
  - a. There is no relationship between VOC and formaldehyde removal rates
  - b. There is a linear relationship between the removal rates of different VOC.
  - c. In order of preference, the following VOC removal rates can be used as proxy of TVOC: toluene, benzene, TCE and xylene.
  - d. Further research is needed to perform a meta-analysis on a wider range of contaminants.
- 2) When comparing different species, there is no correlation between their size and their CO2, formaldehyde or their VOC removal ability.



Figure 5: Removal rates per species per contaminant.

.

# **Appendix 3: List of plants per removal category**

The table below comprises a list of 130 plants which have been screened for either VOC or Formaldehyde removal potential. To establish VOC removal category this research draws upon research by Yang & Son (2009). In the case of formaldehyde, the meta-analysis highlighted the need for a separate category to rate its removal rate, however, to the best of our knowledge, no standard exists. Some of these plants while delivering benefits for air pollution removal may be categorised as weeds depending on the State in Australia. Users are advised to check the weed status of the plant before using.

|                                   |                      | VOC Rr     | Formaldehyde  |
|-----------------------------------|----------------------|------------|---------------|
| Species                           | Common Name          | Efficiency | Rr Efficiency |
| Adiantum capillusveneris          | Southern maiden hair | Unknown    | Low           |
| Aglaonema modestum                | Silver evergreen     | Unknown    | Low           |
| Aglaonema 'Silver Queen'          | Chinese evergreen    | High       | Unknown       |
| Anthurium andreanum               | Flamingo flower      | Medium     | Low           |
| Arachnoides aristata              | Pricky shield fern   | Unknown    | Low           |
| Araucaria heterophylla            | Norfork island pine  | Unknown    | Low           |
| Ardisia crenata                   | Corlberry            | Unknown    | Medium        |
| Ardisia pusilla                   | Japanese fatsia      | Unknown    | Low           |
| Asparagus densiflorus 'Sprengeri' |                      | High       | Unknown       |
| Aspidistra elatior 'Milky Way'    |                      | Low        | Unknown       |
| Asplenium nidus                   | Bird's neste fern    | Unknown    | Low           |
| Botrychium ternatum               | Hammock fern         | Unknown    | Medium        |
| Calathea makoyana                 | Brain plant          | Unknown    | Low           |
| Calathea roseopicata              |                      | Low        | Unknown       |
| Camellia japonica                 | Common camellia      | Unknown    | Low           |
| Camellia sinensis                 | Tea plant            | Unknown    | Low           |
| Chamaecyparis obtusa              | Hinoki false cypres  | Unknown    | Low           |
| Chrysalidocarpus lutescens        | Areca palm           | Unknown    | Low           |
| Chrysanthemum morifolium          | Pot mum              | High       | Low           |
| Citrus medica var. sarcodactylis  |                      | High       | Unknown       |
| Clivia miniate                    | Kaffir lily          | Unknown    | Low           |
| Clorophytum bichetii              | St. Bernanrd lily    | Unknown    | Low           |
| Clorophytum comosum 'Fire Flash'  |                      | Low        | Unknown       |
| Codiaeum variegatum               |                      | Low        | Unknown       |
| Coniogramme japonica              | Bamboo fern          | Unknown    | Low           |
| Crassula portulacea               |                      | High       | Unknown       |
| Cupressus macrocarpa              | Monterey cypress     | Unknown    | Low           |
| Cycas revoluta                    | Sago palm            | Unknown    | Low           |
| Cymbidium Golden Elf              |                      | High       | Unknown       |
| Cyrtomium caryotideum             |                      | Unknown    | Low           |
| Cyrtomium falcatum                | Holly fern           | Unknown    | Low           |

| Davallia mariesii                | Hare's foot fern               | Unknown    | High          |
|----------------------------------|--------------------------------|------------|---------------|
|                                  |                                | VOC Rr     | Formaldehyde  |
| Species                          | Common Name                    | Efficiency | Rr Efficiency |
| Dendranthema morifolium          |                                | High       | Unknown       |
| Dendropanax morbifera            | Korean dendropanax             | Unknown    | Medium        |
| Dieffenbachia amoena             | Giant dumbeane                 | High       | Low           |
| Dieffenbachia seguine            |                                | Low        | Unknown       |
| Dizygotheca elegantissima        | False aralia<br>Red marginated | Unknown    | Low           |
| Dracena concinna                 | dracena                        | Unknown    | Low           |
| Dracena deremensis 'Janet Craig' | Janet Craig                    | High       | Unknown       |
| Dracena deremensis 'Variegata'   | Striped dracena                | Medium     | Low           |
| Dracena deremensis 'Warneckei'   | Warneckei                      | High       | Low           |
| Dracena fragans                  | Corn plant                     | High       | Low           |
| Dracena fragans                  | Corn plant                     | Low        | Low           |
| Dracena 'Janet Craig'            | Janet Craig                    | High       | Unknown       |
| Dracena marginata                | Marginata                      | High       | Unknown       |
| Dracena massangeana              | Mass cane                      | High       | Low           |
| Dryopteris nipponensis           |                                | Unknown    | Low           |
| Elaeocarpus sylvestris           |                                | Unknown    | Low           |
| Epipremnum aureum                | Golden Pothos                  | High       | Low           |
| Epipremnum aureum                | Golden Pothos                  | Low        | Unknown       |
| Eugenia myrtifolia               |                                | Unknown    | Low           |
| Eurya emarginata                 |                                | Unknown    | Low           |
| Fatsia japonica                  | Japanese fatsia                | High       | Unknown       |
| Fatsia japonica                  | Japanese fatsia                | Low        | Unknown       |
| Fatsia japonica                  | Japanese fatsia                | Unknown    | Low           |
| Ficus benjamina                  | Weeping fig                    | Medium     | Unknown       |
| Ficus benjamina                  | Weeping fig                    | Unknown    | Low           |
| Ficus elastic                    | Rubber plant                   | Low        | Unknown       |
| Ficus elastic                    | Rubber plant                   | Unknown    | Low           |
| Ficus microcarpa var. fuyuensis  |                                | High       | Unknown       |
| Fittonia argyroneura             |                                | Medium     | Unknown       |
| Gardenia jasminoides             | Cape jasmine                   | Unknown    | Low           |
| Gerbera jamesonii                | Gerbera daisy                  | High       | Low           |
| Guzmania sp.                     |                                | Medium     | Unknown       |
| Haemaria discolor                | Jewel orcihd                   | Unknown    | Low           |
| Hedera helix                     | English ivy                    | High       | Low           |
| Hemigraphis alternata 'Exotica'  |                                | High       | Unknown       |
| Howea belmoreana                 | Belmore palm                   | Low        | Low           |
| Howea forsteriana                |                                | High       | Unknown       |
| Hoya carnosa 'Variegata'         | Porcelain flower               | High       | Low           |

| Hydrangea macrophylla                |                        | High       | Unknown       |
|--------------------------------------|------------------------|------------|---------------|
|                                      |                        | VOC Rr     | Formaldehyde  |
| Species                              | Common Name            | Efficiency | Rr Efficiency |
| llex crenata                         | Box leaved holly       | Unknown    | Low           |
| Jasminum polyanthum                  | White jasmine          | Unknown    | Low           |
| Jasminum sambac                      | Arabian jasmine        | Unknown    | Low           |
| Laurus nobilis                       | Bay tree               | Unknown    | Medium        |
| Lavandula spp.                       | Sweet lavender         | Unknown    | Medium        |
| Ligustrum japonicum                  | Wax leaf privet        | Unknown    | Low           |
| Maranta leuconeura                   |                        | Low        | Unknown       |
| Mentha guaveolens                    | Apple mint             | Unknown    | Low           |
| Microlepia strigosa                  | Lace fern              | Unknown    | Medium        |
| Nandina domestica                    | Heavenly bamboo        | Unknown    | Medium        |
| Nephrolepsis exaltata 'Bostoniensis' | Boston Fern            | High       | Unknown       |
| Osmunda japonica                     | Japanese royal fern    | Unknown    | High          |
| Pachira aquatica                     | Guiana chestnut        | Unknown    | Low           |
| Pelargonium graveolens               |                        | Low        | Unknown       |
| Pelargonium spp.                     | Geranium               | Unknown    | Medium        |
| Peperomia clusiifolia                |                        | Low        | Unknown       |
| Peperomia clusiifolia                | Red edge peperomia     | Unknown    | Low           |
| Philodendron scandens                |                        | Low        | Unknown       |
| Philodendron selloum                 | Lace tree philodendron | Unknown    | Low           |
| Phoenix roebelenii                   | Pigmy date palm        | Unknown    | Low           |
| Pittosporum tobira                   | Japanese pittosporum   | Unknown    | Low           |
| Polypodium formosanum                |                        | Unknown    | High          |
| Polyscias balfouriana                | Balfour aralia         | Unknown    | Low           |
| Polyscias fruticosa                  |                        | Medium     | Unknown       |
| Polystichum tripteron                |                        | Unknown    | Low           |
| Psidium guajava                      | Guava                  | Unknown    | Medium        |
| Pteris dispar                        |                        | Unknown    | Medium        |
| Pteris ensiformis                    | Silver leaf fern       | Unknown    | Low           |
| Pteris multifida                     | Spider fern            | Unknown    | Medium        |
| Quercus acuta                        | Japanese evergreen oak | Unknown    | Low           |
| Quercus glauca                       |                        | Unknown    | Low           |
| Raphiolepis umbellata                | Yeddo hawthorn         | Unknown    | Low           |
| Rhapis excelsa                       | Lady palm              | Unknown    | Medium        |
| Rosmarinus officinalis               | Rosemary               | Unknown    | Low           |
| Saintpaulia ionantha                 | African violet         | Unknown    | Low           |
| Sanseveria trifasciata               | Snake plant            | Medium     | Low           |
| Sansevieria laurentii                | -                      | High       | Unknown       |
| Schefflera arboricola 'Variegata'    | Umbrella tree          | Low        | Low           |
| Schefflera elegantissima             |                        | Medium     | Unknown       |

| Scindapsus aureus               | Golden pothos         | High       | Unknown       |
|---------------------------------|-----------------------|------------|---------------|
|                                 |                       | VOC Rr     | Formaldehyde  |
| Species                         | Common Name           | Efficiency | Rr Efficiency |
| Selaginella tamariscina         | Spikemoss             | Unknown    | High          |
| Serissa foetida                 | Japanese serissa      | Unknown    | Low           |
| Spathiphyllum 'Petite'          | Peace Lily            | High       | Unknown       |
| Spathiphyllum 'Sensation'       | Peace Lily            | High       | Unknown       |
| Spathiphyllum 'Supreme'         | Peace Lily            | High       | Unknown       |
| Spathiphyllum wallisii          | Peace Lily            | Low        | Low           |
| Stauntonia hexaphylla           | Japanese stauton vine | Unknown    | Low           |
| Syngonium podophyllum           | Arrowhead vine        | Low        | Low           |
| Thelypteris acuminate           |                       | Unknown    | Low           |
| Thelypteris decursivepinnata    |                       | Unknown    | Low           |
| Thelypteris esquirolii          |                       | Unknown    | Low           |
| Thelypteris torresiana          |                       | Unknown    | Low           |
| Tillandsia cyanea               | Pink quill            | Unknown    | Low           |
| Trachelospermum asiaticum       | Chinese ivy           | Unknown    | Low           |
| Tradescantia pallida 'Purpurea' |                       | High       | Unknown       |
| Vibrunum awabuki                | Sweet viburnum        | Unknown    | Low           |
| Zamia pumila                    | Jamaica sago tree     | Unknown    | Medium        |
| Zamioculcas zamiifolia          | ZZ plant Aroid palm   | Unknown    | Low           |

# Appendix 4: Benefit table – for literature review

| Reference                  | Benefit                                           | Relevant pattern                                                                         | Scope<br>(Outdoor<br>/ Indoor) | Scale<br>(landscape<br>vs small) | Subjects of study                                                                               | Methodology                                                                                                                                                                                                                                     | Exposure to stimuli<br>(type and duration)                                                                                                                          | Plant description                                                                                                                                                                                                        | Outcome measures                                                                              | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Torpy et al.<br>2013)     | Air Quality<br>(Aeromycota)                       | healthy plants do<br>not contribute to<br>unhealthy mould<br>spore<br>concentrations     | Indoor                         | Small                            | 55 office spaces in<br>two 7 storey<br>buildings in<br>Sydney CBD                               | 3 sample days for each season. (1) one<br>peace lily in 200mm pot, (2) 3 peace lilies<br>in 200mm pots, (3) one dracena in<br>300mm pot, (4) 3 dracenas in 300mm<br>pots, (5) no-plant control. Air samples<br>collected 50 cm above the floor. | Two study periods:<br>Autumn and Spring                                                                                                                             | Self-watering pots,<br>dead leaves removed.                                                                                                                                                                              | the surface area of the<br>potting mix, fungi<br>composition, quantity,<br>indoor vs. outdoor | We found that indoor plant presence made no significant<br>difference to either indoor mould spore counts or their<br>species composition. No seasonal differences occurred<br>between autumn and spring samples. Indoor spore loads<br>were significantly lower than outdoor levels, demonstrating<br>the efficiency of the heating, ventilation and air conditioning<br>systems in the buildings sampled. Neither the number of<br>plants nor the species of plant used had an influence on<br>spore loads; however, variations of those two variables offer<br>the potential for further studies. |
| (Tani & Hewitt<br>2009)    | Air Quality<br>(Aldehydes,<br>Ketones)            | Plants uptake and metabolise VOC                                                         | Indoor                         | Small                            | Peace lily<br>(Spathiphyllum<br>clevelandii),<br>Golden pothos<br>(Epipremnum<br>aureum)        | Four plants of two different species were<br>acclimated to indoor air and then<br>exposed to VOC (ketones and aldehydes);<br>{fumigated within a transparent bag 20-<br>40L}.                                                                   | Acclimatisation for 1 month.                                                                                                                                        | 50-70cm tall with a leaf<br>area 60-150cm2. Two<br>plant species.                                                                                                                                                        | CO <sub>2</sub> concentrations,<br>Aldehydes, ketones<br>concentration.                       | Plants remove C2-C6 aldehydes and C4-C6 ketones. C3<br>Ketone is not removed by the plant. Concentration uptake<br>ranges from 7-19mmol/m2s and from 2-7mmol/m2s. VOCs<br>are metabolised by the leaf. It takes 20 min to reach 99%<br>equilibrium                                                                                                                                                                                                                                                                                                                                                   |
| (Irga et al.<br>2013)      | Air Quality<br>[Benzene and<br>CO <sub>2</sub> ]  | Hydroculture<br>removes more<br>CO <sub>2</sub> than potting<br>mix but less<br>benzene. | Indoor                         | Small                            | Syngonium<br>podophyllum                                                                        | Within sealed chamber. The target<br>species was grown in (1) conventional<br>potting mix (2) hydro culture, (3) control.<br>Tested at two light levels. Starting<br>conditions 1000ppmv CO <sub>2</sub> and 25ppmv<br>benzene                  | Plants were grown<br>133 days before<br>testing. (23.0+-1`C).<br>Changes in<br>photosynthesis<br>measured at 1 min<br>intervals for 40 min.<br>every day for 1 week | Potting mix: composted<br>hardwood sawdust,<br>bark fines and coarse<br>river (2:2:1),<br>Hydroculture: mixture<br>of perlite and grade 3<br>vermiculite (2:1)                                                           | Leaf area, fresh and dry<br>weight, VOC removal rate<br>and CO <sub>2</sub> absorption        | It can remove up to 61% (based on 1000ppmv) within 40<br>min. Hydroculture medium removes more CO <sub>2</sub> but slightly<br>less benzene than a conventional potting mix. Both growth<br>strategies remove 25ppmv benzene in 7 days. Control<br>groups show some removal activity during the first 2 or 3<br>days but quickly decrease afterwards.                                                                                                                                                                                                                                                |
| (Wood et al.<br>2002)      | Air Quality<br>[Benzene and n-<br>hexane]         | Potted plants as a<br>biofilter. Root<br>microorganisms<br>are key.                      | Indoor                         | Small                            | 3 plant species:<br>Howea<br>forsteriana,<br>Spathiphyllum<br>wallissii, Dracena<br>deremensis, | Sealed chamber with one potted,<br>hydroponic or control. Tests at two<br>doses: (a) Dose of 25 ppm benzene or<br>100 ppm n-hexane. (b) 50 ppm benzene<br>or 150 ppm n-hexane                                                                   | Measured over 48<br>hours before topping<br>up VOCs over 24 h<br>intervals. Test<br>duration for 25 days.<br>N-hexane test<br>duration for up to 40<br>days.        | well-established, 12-<br>month-old plants, 0.3-<br>0.4 m tall. In a 150mm<br>pot with standard, well-<br>aerated potting mix,<br>composed of hardwood<br>sawdust, composted<br>bark fines and coarse<br>river sand 2:2:1 | Leaf area, VOC removal<br>rate compared between<br>control and hydroponic<br>treatment        | VOC's removal comes from the microorganisms of the<br>growth medium. The plant's role is sustaining a healthy<br>population of root microorganisms, transferring the plants<br>to hydroponic system yields same results, All plants able to<br>purify chamber from benzene in 5 days. Approximately 1-2<br>days faster in hydroponic conditions. 40% reduction of n-<br>hexane in hydroponic conditions. Purified chamber within 10<br>days for potted plants.                                                                                                                                       |
| (Wolverton et<br>al. 1989) | Air Quality<br>[Benzene and<br>trichloroethylene] | A pot with plants<br>removes more<br>than control                                        | Indoor                         | Small                            | 8 common indoor<br>plants                                                                       | Within sealed chamber plants were monitored                                                                                                                                                                                                     | concentrations of<br>325–2190 μgm–3                                                                                                                                 |                                                                                                                                                                                                                          | VOC Removal rate                                                                              | the 8 plants tested could remove benzene by 47–90% in 24 h compared to 5–10% in the control tests, and that the rhizosphere zone was the most effective area for removal                                                                                                                                                                                                                                                                                                                                                                                                                             |

| (Orwell et al.<br>2004)                       | Air Quality<br>[Benzene] |                                                                                                                                          | Indoor | Small | 7 potted plants                                                                                                        | In static test-chambers, high airborne<br>doses of benzene were removed within<br>24 h, once the response had been<br>stimulated ('induced') by an initial dose.<br>Removal rates per pot ranged from 12–<br>27 ppm d–1 (40 to 88 mg m–3 d–1) (2.5<br>to 5 times the Australian maximum<br>allowable occupational level). Rates were<br>maintained in light or dark and rose<br>about linearly with increased dose. Rate<br>comparisons were also made on other<br>plant parameters. Micro-organisms of<br>the potting mix rhizosphere were shown<br>to be the main agents of removal. | 24hrs rotations over<br>40 days                                                      | Howea forsteriana<br>(Kentia Palm),<br>Spathiphyllum<br>floribundum, var. Petite<br>(Peace Lily), Dracaena<br>deremensis var. Janet<br>Craig (D. 'Janet Craig'),<br>,S. floribundum, var.<br>Sensation (S.<br>'Sensation'), Dracaena<br>D. marginata,<br>Epipremnum aureum<br>(Devil's Ivy); and<br>actinophylla var. Amate<br>(Queensland Umbrella<br>Tree) | removal of benzene                                                                                                                                             | The results also showed that, under these test conditions, in<br>these species, it was the rhizosphere micro-organisms in the<br>potting mix that were the significant direct agents of VOC<br>removal. Unused potting mix alone was also found to display<br>some VOC removal activity, although at significantly lower<br>rates than with the plant present, and prone to exhaustion<br>within 2 wks. with plant 40 days in the dark VOC level<br>absorption stayed consistent and increased if the dose was<br>increased.                                                                                     |
|-----------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Liu et al.<br>2007)                          | Air Quality<br>[Benzene] | Benzene removal<br>capacity depends<br>on the species.<br>The single highly<br>efficient plant<br>could clean 10m2<br>room in 1-5 hours. | Indoor | Small | 73 common<br>indoor plants for<br>the first test. The<br>10 most efficient<br>species chosen<br>for deeper<br>analysis | Within a controlled greenhouse, plants<br>were fumigated 8 hours per day (air<br>containing 150+-6.7ppb benzene)<br>Greenhouse conditions: 25+-10`C, 55+-<br>15% humidity                                                                                                                                                                                                                                                                                                                                                                                                              | 8 hours per day/X<br>days                                                            | Only a few species<br>specified                                                                                                                                                                                                                                                                                                                              | Benzene levels,<br>Absorption rates, Soil<br>effects.                                                                                                          | 23 did not alter benzene concentration in air, 13 species<br>removed between 0.1–9.99% of benzene in contaminated<br>air, 17 species removed 10–20% and 17 species removed<br>20–40%, 3 removed 60–80% of benzene in the experimental<br>air. Assuming a 10m2 room (2.55m high) with 150ppb of<br>benzene [Totalling 13.26mg benzene] and that plants<br>maintain absorption rate the air would be purified in 0.44 h<br>for <i>Crassula portulacea</i> [leaf area 1m2], 1.08 h for <i>H.</i><br><i>macrophylla</i> , 1.19 h for <i>Cymbidium</i> Golden Elf, 5.39 h for<br><i>Dracaena deremensis</i> variegate |
| (Torpy et al.<br>2013b)                       | Air Quality<br>[Benzene] | Microorganisms in<br>root system can<br>be bio-stimulated<br>to enhance<br>removal                                                       |        |       | Spathiphyllum<br>wallisii 'Petite',                                                                                    | Biostimulation of benzene removal was<br>observed within seven chambers<br>(0.216m3). Purified with 70% ethanol<br>solution prior to testing. Chambers<br>injected with 25 ppm of Benzene (5 times<br>higher than recommended levels in<br>Australia); air samples were taken every<br>24 hours for 14 days. Two top-up<br>injections introduced when 90% of<br>benzene had been removed from the<br>chamber. (1) no bio-stimulant (2) after<br>bio-stimulation                                                                                                                        | Chamber was cleaned<br>and aired for 24 hours<br>prior to testing. Up to<br>14 days. | The potting mix<br>contained 5% coco<br>peat: 80% composted<br>pine bark: 15% basalt<br>crusher dust; and small<br>amounts of aglime,<br>dolomite and<br>superphosphate                                                                                                                                                                                      | community level<br>physiological profile<br>(CLPP) - measured using<br>optical density microbes<br>in Biolog EcoPlates.<br>Before and after<br>biostimulation. | removal rates of about 15%, bacterial activity associated<br>with removal of indoor airborne benzene, and could be<br>applied to increase VOC biodegradation rates, augmenting<br>the uses of indoor plants in improving building<br>environmental quality, Bio-stimulated microorganisms<br>remove benzene twice as fast as non bio-stimulated.                                                                                                                                                                                                                                                                 |
| (Treesubsunto<br>rn &<br>Thiravetyan<br>2012) | Air Quality<br>[Benzene] | More stomata<br>increases uptake<br>of benzene                                                                                           | Indoor | Small | 8 common indoor<br>plants                                                                                              | Plants were prepared stomata<br>accounted, crude wax and<br>photosynthesis analysed, plants were<br>fumigated with benzene, plants for<br>desiccated and benzene extracted.                                                                                                                                                                                                                                                                                                                                                                                                            | 72 hrs                                                                               | Chamaedorea seifrizii,<br>Scindapsus aureus,<br>Sansevieria trifasciata,<br>Philodendron<br>domesticum,<br>Ixoraebarbata craib,<br>Monster acuminate,<br>Epipremnum aureum,<br>and Dracaena<br>sanderiana                                                                                                                                                    | Benzene removal                                                                                                                                                | 8 ornamental plants, it was found that Dracaena sanderiana<br>had the highest benzene removal efficiency. In a long-term<br>study, 4 cycles of benzene were studied under both 24 h<br>dark and 24 h light conditions. From the 2nd to 4th cycle,<br>benzene uptake by plants under 24 h light condition had a<br>higher intensity than under 24 h dark conditions, and the<br>close of D. sanderiana stomata was found only in 24 h dark<br>condition. At the final cycle, D. sanderiana still survived, and<br>benzene uptake continued.                                                                       |

| (Fujii et al.<br>2005)                                                                                                          | Air Quality [CO <sub>2</sub><br>and NOx<br>absorption and<br>adsorption] | Ideal<br>temperatures<br>between 28-35`C                                                                                 | Indoor | Small | A single species:<br>Conferta -<br>(Juniperus<br>conferta part)          | (1) Conferta, (2) Ivy, (3) Control, empty<br>pot. Humidity and temperature rise<br>prevented by a cooling system. CO <sub>2</sub> was<br>raised to 3500-4000 ppm, NOx raised to<br>1000ppm higher than atmospheric levels.                                                                                                          | Results reported as<br>absorption through a<br>day. Unclear if<br>monitored daily for a<br>year or a single day<br>each season.                                                                               | Placed a Conferta<br>within a sealed<br>chamber (0.5x0.8x0.12<br>m3)                                                                                                            | Illumination intensity,<br>humidity, temperature,<br>CO <sub>2</sub> levels (using non-<br>diffusion infrared<br>absorption method), NOx<br>and NO <sub>2</sub> - (using<br>chemiluminescence<br>method)                                                                        | Removal effects by plants should be considered for<br>absorption and adsorption (from leaves surface). CO2<br>absorption varies from minimal (0.001mg/min –<br>27.5mg/day) during winter to up to 0.08 m/min (145.6<br>mg/day) during late summer. In autumn 77.4 mg/day,<br>Photosynthesis activity is at its highest in late summer.<br>Absorption influence by illuminance of the chamber during<br>daytime and temperature at night time. Temperature<br>between 30-35`C has best results, above temperatures<br>significantly decrease absorption velocity to 0.03 or lower.<br>One day's CO <sub>2</sub> absorption/ emission (approx. 800cm2 leaf<br>area) was 1022.1mg CO <sub>2</sub> /day in spring, 1901.1 in early<br>summer, 145.4 in late summer, 252.2 in autumn, and 168.0<br>in winter. |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------|-------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Park et al.<br>2010). Original<br>text in Korean<br>(information<br>for this table<br>from abstract,<br>tables and<br>figures) | Air Quality [CO <sub>2</sub> ]                                           | Larger total leaf<br>area = more CO <sub>2</sub><br>removed                                                              | Indoor | Small | 5 foliage plant<br>species                                               | Within a sealed chamber (size<br>unspecified), each plant was treated with<br>500 or 1000 ppm CO2. And with different<br>illuminance levels.                                                                                                                                                                                        | Day and night                                                                                                                                                                                                 | Planted in 18cm<br>diameter pots.                                                                                                                                               | Photosynthesis rate<br>(based on CO2<br>concentration<br>before/after). Substrate<br>type, leaf size, light<br>intensity                                                                                                                                                        | Plants exposed to higher CO2 concentrations and higher<br>light intensity (200nmol*m2/s) had faster photosynthesis<br>rate. Plants with larger leaves showed higher photosynthetic<br>rate than plants with smaller leaves Released CO2 released<br>at night is very low compared to absorption rates. Substrate<br>difference (peat moss and hydro ball medium) had no effect<br>on the photosynthetic rate.                                                                                                                                                                                                                                                                                                                                                                                            |
| (Torpy et al.<br>2014)                                                                                                          | Air Quality [CO <sub>2</sub> ]                                           | More light, higher<br>photosynthesis<br>rate (higher<br>uptake of CO <sub>2</sub> ).                                     | Indoor | small | 8 common indoor<br>plants                                                | Within the sealed chamber, CO <sub>2</sub> set at<br>400ppm. Illumination gradually increased<br>at intervals of<br>0,2,10,20,50,100,200,350,1000, 2000<br>nmol*PAR/m/s. Plants acclimatised to<br>low and high light levels. After<br>experiment plants were dissected and<br>dry weight taken. Co <sub>2</sub> Levels at 1000 ppm | Plants acclimatised<br>for 93 days prior to<br>the experiment. Tests<br>carried out 9:00-5:00.<br>40 min to complete a<br>test per plant. Light<br>test maintained 3-5<br>min to stabilise<br>photosynthesis. | 12 months of age.<br>Grown in standard<br>potting mixes of<br>hardwood, sawdust,<br>composted bark fines<br>and coarse river sand<br>(2:2:1) in 20 cm<br>diameter pots          | Amount of CO <sub>2</sub> absorbed<br>the reduction in parts per<br>million in the chamber<br>(photosynthesis rate),<br>also Table Of plants for<br>square metre needed<br>(leaf area), fresh and dry<br>weight, Light intensity<br>See light and CO <sub>2</sub> plant<br>list | This study profiled the CO <sub>2</sub> removal potential of eight<br>common indoor plant species, acclimatised to both indoor<br>and glasshouse lighting levels, to develop baseline data to<br>facilitate the development of indoor plant installations to<br>improve indoor air quality by reducing excess CO <sub>2</sub><br>concentrations. The results indicate that, with the<br>appropriate choiceofindoorplant species and a targeted<br>increase in plant specific lighting, plantscape installations<br>could be developed to remove a proportion of indoor CO <sub>2</sub> -<br>For best plants see light and CO <sub>2</sub> plant list                                                                                                                                                     |
| (Kim et al.<br>2008)                                                                                                            | Air Quality<br>[Formaldehyde]                                            | Purification ability<br>has a plateau,<br>Root systems<br>responsible for<br>purification<br>properties of the<br>plant. | Indoor | Small | 2 plants: Fatsia<br>japonica and Ficus<br>benjamina                      | Aerial vs. root ball comparison of<br>formaldehyde uptake (2 nL/L) in 1m3<br>airtight chamber (half the volume of<br>personal breathing space). Control<br>experiment sterilising root system.                                                                                                                                      | 5 hours during the<br>day and 5 hours at<br>night.                                                                                                                                                            | 2-year-old plants. F.<br>benjamina in 19cm<br>diameter pot. (Leaf<br>area 0.11m2), F.<br>japonica in 15 cm pot.<br>(Leaf area 0.13m2),<br>Single main stem,<br>height 40-55 cm. | Formaldehyde removal<br>per total leaf area, time                                                                                                                                                                                                                               | Initial uptake very fast but slows down as formaldehyde<br>concentration in chamber reduces. Both plants reduce 80%<br>of formaldehyde concentration in a chamber within 5 hours<br>of the experiment. Up to 90% of formaldehyde removal is a<br>result of microorganisms living in the root system. The aerial<br>part of the plant: removes formaldehyde during the day<br>(effect negligible at night), Root zone: removes<br>formaldehyde day and night. Sterile roots reduce efficiency<br>80%                                                                                                                                                                                                                                                                                                      |
| (Kim et al.<br>2010)                                                                                                            | Air Quality<br>[Formaldehyde]                                            | Ferns are the most<br>effective<br>formaldehyde<br>removals                                                              | Indoor | Small | 86 species from<br>five groups.<br>Experiments<br>conducted in<br>Korea. | Species divided into five groups and<br>tested in a chamber (90X90X90). Rooms<br>with controlled temperature, light and<br>humidity. Plants compared to a no-plant<br>control. Three replicates.                                                                                                                                    | Measures were taken<br>every hour for five<br>hours.                                                                                                                                                          | ferns (20), woody<br>foliage plants (20),<br>herbaceous foliage<br>plants (20), Korean<br>native plants (20),<br>herbs (6).                                                     | Formaldehyde<br>concentration per leaf<br>area, time                                                                                                                                                                                                                            | 9 species removed 95% of formaldehyde in 5 hours<br>(osmunda japonica, selaginella tamaricina, davallia mariesii,<br>polypodium formosanum, psidium guajava, lavandula spp,<br>Pteris dispar, Pteris multifida, Pelargonium spp). Plants<br>separated into excellent (over 1.2mg/m3 per cm2 of leaf),<br>intermediate or poor (under 0.6) formaldehyde removal.<br>Ferns were the most effective.                                                                                                                                                                                                                                                                                                                                                                                                        |

| (Aydogan &<br>Montoya<br>2011) | Air Quality<br>[Formaldehyde]   | Substrate type is<br>important (at least<br>in hydroponics) | Indoor | Small | Four common<br>interior species in<br>the hydroponic<br>growing<br>mediums:                                                                                                                                                                 | Within test chamber (61X30.5X40.6cm).<br>Temperature condition maintained.<br>Artificial lighting (in 12h cycles) outside<br>the chamber. Three growing mediums<br>compared to assess the ability of plants<br>to remove formaldehyde.                                                                                                                                                                                                                                                                                                 | Plants acclimated to<br>the interior for 2<br>weeks and 24 h in a<br>hydroponic condition<br>prior to the testing<br>period. Initial<br>condition inside<br>chamber 1.63ppm<br>formaldehyde. Tests<br>in triplicate (wet<br>medium, dry medium,<br>no plant) | Species: Hedera helix<br>(23 cm)<br>Chrysanthemum<br>morifolium (38 cm),<br>Dieffenbachia<br>compacta (39 cm),<br>Epipremnum aureum<br>(27 cm). Under 1 year<br>old. In 15 cm pots.<br>Growing media: grow<br>stone, expanded clay<br>and activated carbon. | CO <sub>2</sub> monitor,<br>formaldehyde levels, leaf<br>surface area (for<br>comparison),                                               | In a 10 hour period: (mean from all plants). Up to 98%<br>reduction using activated carbon (88% wet medium), Up to<br>62% reduction using expanded clay (26% without plants, Up<br>to 62% reduction in grow stone (17% without plants), The<br>most efficient plant: 95% reduction (D. compacta), followed<br>by 94% (E. aurenum), 88% (H. Helix), 84% (C. morifolium).                                                                                                                                                                                                                                                                                                                           |
|--------------------------------|---------------------------------|-------------------------------------------------------------|--------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Xu et al.<br>2011)            | Air Quality<br>[Formaldehyde]   | Exposed surface<br>of potted plants<br>removes more         | Indoor | Small | 3 plant species                                                                                                                                                                                                                             | Sealed chamber (40X40X60cm) pumped<br>with formaldehyde at increasing intervals<br>(starting at 4.0 mg/m3 and increasing<br>0.5mg/m3 every 5 days). Light intensity<br>also varied, 80,160, 240 nmol/m2*s                                                                                                                                                                                                                                                                                                                              | Measurements were<br>taken every 3 days<br>until concentration<br>reached the<br>phytotoxicity for each<br>species.                                                                                                                                          | Clorophytum<br>xosmosum, Aloe vera,<br>Epipremnum aureum.<br>All in an 18 cm pot.                                                                                                                                                                           | Formaldehyde levels,<br>Light intensity                                                                                                  | Ability to clean comes from formaldehyde dehydrogenase,<br><i>C. xomosum</i> removes 90-95% at increasing light levels. <i>Aloe</i><br>removes 14,20, 53% at increasing light levels, <i>Epipremnum</i><br>removes 34, 56, 84%, Soil account for roughly 50% of the<br>removal achieved by the plant-soil system. Daytime and<br>higher light levels make it more efficient.                                                                                                                                                                                                                                                                                                                      |
| (Papinchak et<br>al. 2009)     | Air Quality<br>[Ozone]          |                                                             | Indoor | Small | snake plant<br>(Sansevieria<br>trifasciata), spider<br>plant<br>(Chlorophytum<br>comosum), and<br>golden pothos<br>(Epipremnum<br>aureum),                                                                                                  | In chambers with a simulated indoor<br>environment. Ozone injected until a<br>200ppm concentration. (1) plant,<br>separated per species (2) no-plant<br>control. Concentrations recorded every<br>5, 6 minutes. Experiment replicated six<br>times per plant species.                                                                                                                                                                                                                                                                  | Until ozone levels<br>reach under 5ppm<br>within the chamber.                                                                                                                                                                                                | Foliage plants of low maintenance.                                                                                                                                                                                                                          | ozone concentration,<br>time, leaf area, stomatal<br>conduction,                                                                         | Ozone depletion time from 38 to 120 minutes. No difference<br>between plant species. No difference between the day or<br>evening tests.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (Abbass et al.<br>2017)        | Air Quality<br>[Ozone]          | 1 plant per 1.8 m2<br>floor area.                           | Indoor | Small | five common<br>indoor species.<br>Light levels<br>extracted from a<br>no-window lab,<br>residential<br>apartment, south-<br>facing hallway<br>during a cloudy<br>and sunny day,<br>north-facing<br>office, lamps<br>projected to<br>plants. | two chambers (52L). Air dehumidified<br>and passed through an activated carbon<br>filter to remove VOC's before being<br>dehumidified. Air ozonated at 60 ppb<br>(elevated but commonly found at real-<br>world). (1) ozone removal per plant<br>species. (2) Light. Separate tests to study<br>the effect of light on photosynthesis rate<br>and ozone uptake. Study replicated<br>indoor light conditions based on<br>measurements from 6 rooms. (3)<br>Control. The effect of the chamber and<br>the pot itself were also measured. | 8h of ozonated air<br>followed by 16h of<br>non-ozonated air. The<br>cycle repeated 3<br>times (64 hours in<br>total). For light<br>experiment12.5 hours<br>alternating 2.5 hours<br>with light and 2.5<br>hours without light.                              | Peace Lily, Ficus,<br>Calathia, Dieffenbachia,<br>Golden Pothos. Planted<br>in 15 cm pots and<br>passed to a glass<br>breaker with an<br>aluminium cover sheet<br>to minimise interaction<br>with ozone                                                     | ozone deposition<br>velocities based on leaf<br>area. Light. Ozone<br>concentration at the inlet<br>and outlet measured<br>every minute. | Ozone deposition velocity increases during each repetition.<br>With a constant supply of ozone, the deposition velocity<br>begins 'fast' but decreases until flattening out between 1-2<br>hours later. Authors believe the differences between species<br>could be attributed to leaf roughness per species. Light<br>affects ozone removal. with plants opening their stomata<br>when lights are turned on. Ozone removal velocity ranges<br>from 0.9% to 9% for leaf surface area. Requiring 1 plant<br>every1.8m2                                                                                                                                                                             |
| (Przybysz et al.<br>2014)      | Air Quality [PM & heavy metals] | cleaning leaves                                             | both   | N/A   | leaves & levels of<br>particulates &<br>rain events                                                                                                                                                                                         | 1yr old plants planted at 3 sites, soil and leave samples taken and analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 months - 3 samples                                                                                                                                                                                                                                         | evergreen species<br>(Taxus baccata L.,<br>Hedera helix L. and<br>Pinus sylvestris L.)                                                                                                                                                                      | the amount of PM, pb cd,<br>Mn, Ni, Cu, Zn,                                                                                              | collected on leaves, largest better, water washed off much,<br>In this study, PM was accumulated on leaves, needles and<br>twigs in increasing quantities in successive terms during the<br>season. Most of the PM accumulated belonged to the large<br>fraction size (10–100 $\mu$ m) and occurred on the surface of<br>foliage. The highest amounts of PM and TE accumulated on<br>the foliage of Pinus sylvestris L. grown at the most polluted<br>site and protected from direct precipitation.Our trials with<br>simulated rainfall clearly showed that it removed a<br>considerable proportion of deposited PM from the foliage,<br>mostly of the large size fraction, but not of smallest. |

| (Chen et al.<br>2017)         | Air Quality [PM<br>between 0.01-<br>50nm] |                                                                                        | Indoor | Small | 5 tree species                             | Tree planted in a growth chamber. CO <sub>2</sub><br>kept at 350ppm, relative humidity at<br>50%, illumination simulating daylight<br>patterns, and temperature variation (11-<br>25C) emulating May in Beijing. (1)<br>aerosol particles of (NH4)2SO4 dispersed<br>with an atomiser (over 106<br>particles/cm3). Each tree measured<br>individually. (2) no-plant control<br>evaluates particle deposition in the<br>chamber. (3) atmospheric air pumped<br>into the chamber (also a control). Three<br>levels of air flow tested: 2L/min, 4L/min<br>and 12L/min. | Plant given time to<br>adapt to growth<br>conditions.<br>Transplanted from a<br>forest to Beijing<br>Forestry University. 3<br>weeks outside, 4-6<br>weeks inside a<br>greenhouse, 1 week<br>in growth chamber<br>prior to testing. | Tree species: Kerria<br>japonica, Sophora<br>japonica, Philadelphus<br>pekinensis, Gleditsia<br>sinensis, Prunus persica.<br>All 4 year old. Leaves<br>washed with ionised<br>water before<br>experiment                                                                                                                             | particle capture rate per<br>leaf area, time, leaf<br>microstructure. | Leaf geometry and surface characteristics (broadness,<br>trichomes and groves) can increase particle capture. Leaf<br>area is not proportional to particle capture. Leaves with<br>rough surfaces capture more than smooth surfaces. Sophora<br>japoinica with a high deposition velocity has deep grooves<br>and hairs on both sides of the leaf. Higher wind speed leads<br>to higher deposition velocity. Capture depends on wind<br>direction (aerodynamics) and it can also get saturated so, in<br>some conditions, it can increase PM under some conditions.<br>Vegetation can reduce particle pollution under some<br>conditions but it is important to consider specific habitat<br>conditions and choosing plants based on their leaf structures<br>and arranging the plants to facilitate air flow. |
|-------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|--------|-------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Gawronska &<br>Bakera 2015)  | Air Quality [PM]                          | It is not just<br>gravity that allows<br>plants to act as<br>passive filters of<br>PM. | indoor | Small | spider plants                              | Five different rooms: (1) a dental clinic,<br>(2) a perfume bottling room, (3)<br>suburban house, (4) apartment and (5)<br>office. Rooms are not air conditioning;<br>temperature from 18-23C. With a<br>treatment of (a) PM captured by the<br>plant, (b) aluminium plates used as a<br>control surface.                                                                                                                                                                                                                                                          | 2 months (Oct-Dec)                                                                                                                                                                                                                  | Chlorophytum<br>comosum (spider plant)                                                                                                                                                                                                                                                                                               | Washable PM and non-<br>washable PM                                   | spider plants accumulate PM trapped in waxes and washable<br>PM. More than gravity forces are involved in PM<br>accumulation. The smallest sizes of PM are accumulated<br>more tightly in the wax of the leaves.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (Ugrekhelidze<br>et al. 1997) | Air Quality<br>[Toluene,<br>Benzene]      | purification VOC<br>removal, Benefit<br>for younger<br>leaves?                         | Indoor | Small | Spinach leaves                             | In a laboratory, complicated process see<br>paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | See paper                                                                                                                                                                                                                           | 20-day-old plants of<br>spinach ( <i>Spinacia</i><br><i>oleracea</i> ), grown under<br>sterile conditions in<br>Knop's nutrient<br>medium, and with<br>leaves and leafy shoots<br>of mature plants:<br>common maple ( <i>Acer</i><br><i>campestre</i> ), apple<br>( <i>Malus domestica</i> ), and<br>vine ( <i>Vitis vinifera</i> ). | The amount of benzene<br>in toluene absorbed                          | The [1-614C]benzene and [1-14C]toluene vapours penetrate<br>into hypostomatous leaves of <i>Acer campestre, Malus</i><br><i>domestica</i> , and <i>Vitis vinifera</i> from both sides, whereas<br>hydrocarbons are more intensively absorbed by the<br>stomatiferous side and more actively intensively absorbed<br>by the stomatiferous side and more actively taken up by<br>young leaves. benzene vapour is taken up mainly through<br>stomata. It should be noted that under these experimental<br>conditions (high humidity, light), the stomata were mostly<br>open.                                                                                                                                                                                                                                     |
| (Kim et al.<br>2014)          | Air Quality<br>[Toluene, Xylene]          | Bigger pots =<br>bigger roots =<br>more removal.<br>(ideal size 4L)                    | Indoor | Small | Fatsia japonica<br>and Dracena<br>fragans. | Each plant grown in different-sized pots<br>to provide different root zone volume<br>ratios. Chamber (1m3) with controlled<br>light, temperature, humidity. Three<br>concentrations                                                                                                                                                                                                                                                                                                                                                                                | 12 hours exposed to<br>initial concentration<br>of 1nL/L of each gas                                                                                                                                                                | All pots were 20 cm<br>high with 16 cm of soil.<br>The with changed with<br>a 1L, 2L, 4L, 6L, 12L pot.<br>Grown in their pots for<br>6 months before<br>testing. Leaf area = 3.6-<br>3.9 m2 for D. fragans,<br>1.3-1.6m2 for F.<br>japonica                                                                                          | Removal of toluene and xylene per root area, time                     | F. japonica twice as efficient as D. fragans in removing VOCs<br>After 12 hours: Removal efficiency increased as root volume<br>increased (bigger pots). Ideal pot size = 4L for both, 6L for F.<br>japonica. Using leaf area, height or volume is not enough to<br>predict how many plants are needed to remove VOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (Sriprapat et<br>al. 2014)    | Air Quality<br>[Toluene, Xylene]          | purification VOC<br>removal                                                            | Indoor | Small | 12 plants                                  | Leaf area 0.013m2, Cultures of plants<br>were maintained in plastic pots(0.1<br>0.1m2) that contained 200g of soil and<br>coco coir (1:1) as growth media.<br>Furthermore, the pot was covered with<br>aluminium foil to avoid other factors<br>such as soil and pot absorption. VOC<br>levels tested in lab conditions                                                                                                                                                                                                                                            | plants placed in<br>chambers with a<br>constant level of gas<br>for 12 hr light-dark<br>cycle.                                                                                                                                      | see methodology                                                                                                                                                                                                                                                                                                                      | amount VOC absorbed                                                   | Of the twelve plant species examined, the highest toluene<br>removal was found in Sansevieria trifasciata, while the ethyl<br>benzene removal from the air was with<br>Chlorophytumcomosum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| (Orwell et al.<br>2006)    | Air Quality [VOC -<br>Toluene and<br>Xylene] | The rate of<br>removal responds<br>to concentration<br>rates of VOC.<br>More<br>concentration,<br>faster removal. | Indoor | Small | Spathiphyllum<br>'Sweet Chico' and<br>Dracaena<br>deremensis 'Janet<br>Craig'                                                                                                              | Four dosage concentrations used: (A)<br>0.20ppm (medium range of what usually<br>found in office), (B) 1ppm, (C) 10ppm<br>(two concentrations enough to cause<br>complaints: dizziness, loss of focus) and<br>(D) 100ppm (exceeding recommended<br>levels of VOC in Australia). The dosage<br>administered at beginning of day with<br>top-ups. Three test chambers: (1)<br>Toluene, (2) Xylene, (3) Mixture of both.<br>For replicates per treatment. | 5 days for each<br>concentration level.<br>Same four replicates<br>used for the four<br>concentration levels<br>with a 3-day rest in<br>between<br>experiments. 5 to 9<br>VOC injections<br>completed depending<br>on the progressive<br>acceleration rate of<br>VOC removal. | Well established (12<br>months old), about<br>40cm in height and in<br>15 cm diameter pots.<br>Planted in composted<br>hardwood sawdust,<br>composted bark fines<br>and coarse river sand<br>(2:2:1)                            | Rate of removal, leaf<br>area, dry weight of plant<br>and potting mix,                                                                                                                  | If concentrations rise, so do rates of removal (up to ten<br>times faster). Removal capacity of Xylene increases with<br>every step up in dosage. Toluene follows similar pattern<br>until the threshold of 100ppm (is it a saturation point or<br>another issue). Synergy interactions of microorganisms<br>when exposed to mixtures of VOC. Authors discussion:<br>Plants become more effective in removal. Reference to<br>other authors indicating a shift in potted microorganisms<br>variety responding to contaminants present in the air.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Pegas et al.<br>2012)     | Air Quality [VOC,<br>PM, CO <sub>2</sub> ]   | 1 plant per 9.2 m<br>achieve 15% less<br>benzene, 30% less<br>PM, 45% less CO <sub>2</sub>                        | Indoor | Small | Single Classroom<br>with ~25 students<br>in a school,<br>Poretugal. School<br>surrounded by<br>commercial and<br>residential<br>buildings and<br>beside it a parking<br>lot and busy road. | Nine-week air pollution monitoring<br>Indoor and Outdoor of a classroom. (1)<br>Classroom with 6 plants hanging from<br>the ceiling (2) no-plant control. The room<br>was 52.5m2 with wooden floor, water<br>based paint on the walls and five<br>windows. Measurements were taken<br>simultaneously inside the classroom and<br>the playground. Windows remain close<br>through study period.                                                         | 9 weeks in total. 3<br>weeks without plants<br>and 6 weeks with<br>potted plants. Study<br>conducted from Feb-<br>May 2011                                                                                                                                                    | Species as suggested by<br>NASA. Dracena<br>deremensis, Dracena<br>marginata,<br>Spathiphyllum. Number<br>of plants responding to<br>recommendation of<br>Associated Landscape<br>Contractors of America<br>(1 plant per 9.2m2) | Temperature, CO, CO <sub>2</sub> ,<br>VOC, PM and carbonyls.<br>Relative humidity and air<br>quality measured with<br>portable Indoor Air IQ<br>610 Quality Probe and a<br>TSI monitor. | Temperature increased by 1 degree when plants introduced<br>in classroom; CO had no significant changes (measurements<br>always low); 45% less CO <sub>2</sub> (from 2004+/-580 to 1121+/-600<br>ppm); total VOCs –73% (from933+/-577 to 249+/- $\mu$ g/m3) -<br>this includes a 15% reduction in benzene, 80% reduction of<br>m+p-xylene and o-xylene, a 57% decrease of toluene, etc;<br>carbonyls at -40% ; and PM10 –30%, compared with no-<br>plant rooms. Three exceptions of the closed windows rule<br>during the hottest days. Authors consider effects negligible<br>as they represent 5% of occupancy period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Wolverton et<br>al. 1984) | Air Quality [VOC]                            | plants absorb<br>VOCs through<br>leaves. 70 plants<br>for a 167m <sup>2</sup> home                                | Indoor | Small | 3 plant types                                                                                                                                                                              | the ability of plants to remove<br>Formaldehyde soil tested to see its<br>impact -                                                                                                                                                                                                                                                                                                                                                                     | 6hrs 24hrs                                                                                                                                                                                                                                                                    | golden pothos<br>(Scindapsus aureus),<br>nephthytis (Syngonium<br>podophyllum), and<br>spider plant<br>(Chlorophytum elatum<br>var. vittatum)                                                                                   | formaldehyde removed                                                                                                                                                                    | A sealed, Plexiglas chamber with temperature and humidity<br>control and illuminated externally with wide spectrum grow<br>lights was used to evaluate the ability of golden pothos<br>(Scindapsus aureus), nephthytis (Syngonium podophyllum),<br>and spider plant (Chlorophytum elatum var. vittatum) to<br>effect the removal of formaldehyde from contaminated air<br>at initial concentrations of 15-37 ppm. Under the conditions<br>of this study, the spider plant proved most efficient by<br>sorbing and/or effecting the removal of up to 2.27 ug<br>formaldehyde per cm2 leaf surface area in 6 h of exposure.<br>The immediate application of this new botanical air-<br>purification system should be in energy-efficient homes that<br>have a high risk of this organic concentrating in the air, due<br>to outgassing of urea-formaldehyde foam insulation, particle<br>board,fabrics and various other synthetic materials. 2 pots<br>filled with a commercial potting soil mix demonstrated that<br>the potting soil would absorb formaldehyde from air by<br>reducing the formaldehyde from 15 to 10 ppm in 24 h.<br>Chlorophytume latum var. vittatum seems best at removing<br>VOCs |

| (Wood et al.<br>2006)          | Air Quality [VOC] | Total VOC higher<br>than 100ppb<br>stimulate efficient<br>removal<br>mechanisms.  | Indoor | Small | 60 offices (12 per<br>treatment),<br>across three<br>buildings in<br>Sydney. 14 VOC's<br>detected within<br>the office spaces.                           | Real-world experiment' in single<br>occupant offices between 10-12m2.<br>Weekly measurements of air quality. Ex1:<br>Dracena plants in 300mm pots<br>introduced (1) 3 plants, (2) 6 plants, (3)<br>no-plant control. Ex 2: Similar procedure<br>but with (A) no-plant control and (B) 3<br>and (c) 6 plants of which 1 was a<br>different species (Spathiphyllum) in 200<br>mm pot. Offices sampled between 10 am<br>and noon. | 5-9 week periods for<br>each treatment                                                                                                                                                 | Spathiphyllum 'Sweet<br>Chico' and Dracaena<br>deremensis 'Janet<br>Craig'. Well established<br>and 12 months old.                                                                                                                                                                                | Air quality, CO <sub>2</sub> , CO,<br>relative humidity and<br>temperature                                                                                                                                                                                                                                                    | When TVOC loads in reference offices rose above 100 ppb,<br>large reductions, of from 50 to 75% (to <100 ppb), were<br>found in planted offices, under all planting regimes The<br>results indicate that air-borne TVOC levels above a threshold<br>of about 100 ppb stimulate the graded induction of an<br>efficient metabolic VOC-removal mechanism in the<br>microcosm. The findings together demonstrate that potted-<br>plants can provide an efficient, self-regulating, low-cost,<br>sustainable, bioremediation system for indoor air pollution,<br>which can effectively complement engineering measures to<br>reduce indoor air pollution, and hence improve human well-<br>being and productivity.                                 |
|--------------------------------|-------------------|-----------------------------------------------------------------------------------|--------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Yang et al.<br>2009)          | Air Quality [VOC] | Species diversity is<br>needed                                                    | Indoor | Small | 28 species,<br>commonly used.<br>Five VOC:<br>benzene, toluene,<br>octane,<br>halogenated<br>hydrocarbon<br>[trichloroethylene<br>(TCE)], and<br>terpene | Individual plants placed in chambers of<br>10 L and exposed to 10 ppm of the five<br>VOC                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                        | plants in 10 cm pots<br>with a growing media<br>of peatmoss, pine bark,<br>and perlite/vermiculite<br>(2:1:1, v/v)                                                                                                                                                                                | Removal efficiency per<br>leaf area.                                                                                                                                                                                                                                                                                          | Hemigraphis alternata, Hedera helix, Hoya carnosa, and<br>Asparagus densiflorus had the highest removal efficiencies<br>for all pollutants; Tradescantia pallida removed four of the<br>five VOCs (i.e., benzene, toluene, TCE, and a-pinene).<br>Fittonia argyroneura effectively removed benzene, toluene,<br>and TCE. Ficus benjamina removed octane and a-pinene,<br>Polyscias fruticosa, effectively removed octane. The<br>variation in removal efficiency among species indicates that<br>for maximum improvement of indoor air quality, multiple<br>species are needed.                                                                                                                                                                |
| (Wetzel &<br>Doucette<br>2015) | Air Quality [VOC] | plants absorb<br>VOCs through<br>leaves                                           | Indoor | Small | 4 plants types                                                                                                                                           | To investigate the potential use of plants<br>as indoor air VOC samples, a static<br>headspace approach was used to<br>examine the relationship between leaf<br>and air concentrations, leaf lipid contents<br>and octanol-air partition coefficients<br>(Koa) for six VOCs and four plant species                                                                                                                             | 48 hours                                                                                                                                                                               | Four common<br>houseplants were used<br>in both the laboratory<br>and residential<br>experiments: ficus<br>(Ficus benjamina);<br>golden pothos<br>(Epipremnum aureum);<br>spider fern<br>(Chlorophytus<br>comsosum 'vittatum');<br>and Christmas cactus<br>(Schlumbergera<br>truncate 'harmony'). | Ficus [12.4%]c Log LACF (L<br>Kg 1) Spider [9.30%] Log<br>LACF (L Kg 1) Pothos<br>[6.67%] Log LACF (L Kg 1)<br>Cactus [3.82%] Log LACF<br>(L Kg 1)                                                                                                                                                                            | van use leaves as VOC samplers, ficus removed most VOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (Rihn et al.<br>2015)          | N/A               | Reporting air<br>quality benefits<br>increases the<br>probability of<br>purchase. | N/A    | N/A   | Experiment<br>conducted in<br>Florida                                                                                                                    | Simulation: 16 scenarios to evaluate:<br>how much are people willing to<br>buy/when information is provided<br>(\$10.98, \$12.98, \$14.98). Scenarios had 5<br>identical plants. Participants asked to<br>answer considering budget constraints.                                                                                                                                                                               | 30 min during the<br>experiment. Eye-<br>tracker first calibrated<br>to the participant;<br>instructions, example<br>(using tomato plant),<br>experiment with<br>three target species. | three plant species:<br>Dracena marginata,<br>Spathiphyllum wallisii,<br>Guzmania lingulata. All<br>leafy species, indoor<br>plants.                                                                                                                                                              | Eye-tracking (Tobii X1<br>Light Eye Tracker), VOC<br>removal (low, high, no<br>label), production<br>practices (certified<br>organic, organic vs.<br>inorganic), product origin<br>(instate, domestic,<br>imported). Survey:<br>sociodemographic, self-<br>reported barriers to<br>purchase. Purchase<br>likelihood 1-7 scale | Things that increase the likelihood of plant purchase: plant<br>type associated with preference (Dracena more likely to be<br>purchased), certified organic (uncertified organic was also<br>more likely to be purchased than not organic), Either in-state<br>or domestic origin, high VOC removal rating, eye fixation on<br>the highest price and domestic origin. Regarding<br>demographic: female more likely to buy, older age, with<br>children or pets less likely to buy. Self-reported barriers to<br>purchase: maintenance (42%), price, space, light (~30%), feel<br>bad if I kill it (26%), bugs (23%), allergies and toxicity for pets<br>(17%), other (14%), lack of selection (9%), don't like it (4%),<br>toxic for kids (3%) |

| Reference                                                                   | Benefit                                 | Relevant pattern                                                                                                                       | Outdoor<br>/ Indoor | Scale<br>(landscape<br>vs small) | Subjects of study                                                                                                                                                                                                                                                        | Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exposure to stimuli<br>(type and duration)                                                                                                     | Plant description                                                                                                                | Outcome measures                                                                                                                                                                                                                                                                                               | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shibata &<br>Suzuki, 2001 in<br>(Bringslimark<br>et al. 2009)               | Well-being<br>[Academic<br>Performance] | You don't have to<br>look at the plants<br>to experience an<br>increase in<br>performance.                                             | Indoor              | Small                            | 70 students;<br>simulated office<br>without windows                                                                                                                                                                                                                      | Randomised experiment with repeated<br>measures (1) Three plants from 15 to 30<br>cm, not in sight when working on task,<br>(2) plant control                                                                                                                                                                                                                                                                                                                                                                                                       | 5 min during task, 3<br>min break, 5 min<br>during task time for a<br>questionnaire                                                            |                                                                                                                                  | Key-response task, mood,<br>fatigue, room assessment                                                                                                                                                                                                                                                           | Higher rate of correct the response in 2nd task period with plants; no significant effects on mood or fatigue; room with plants rated more silent and smaller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (Shibata &<br>Suzuki 2002)                                                  | Well-being<br>[Academic<br>Performance] | Best performance<br>when the plant is<br>visible. Males<br>experience<br>greater<br>performance gains<br>than flames (leafy<br>plants) | Indoor              | Small                            | 146 students (83<br>males) - study<br>conducted in<br>Japan                                                                                                                                                                                                              | Students complete a task within a room<br>with covered windows with (1) a plant<br>145 cm in front of the subject, (2) a plant<br>145cm to the side of the subject or (3)<br>control. Two tasks: word association (30<br>words for 20 items - 73 subjects) or card<br>sorting task (180 cards in alphabetical<br>order - 72 subjects)                                                                                                                                                                                                               | During test (~30 min):<br>5 min wait time<br>(alone in room),<br>mood evaluation<br>(baseline), (10 min),<br>task (10 min), mood<br>evaluation | Leafy plants about one<br>meter high.<br>(Epiremnum aureum)                                                                      | Self-reported measures<br>of mood; task-<br>performance (no. of<br>words generated or no. of<br>cards sorted), room<br>effects, and attention to<br>plant, plant effects                                                                                                                                       | Word association task: Gender is significant with female<br>performing better in all conditions. Men show slightly fewer<br>total words in the no-plant room -best results with the plant-<br>in-front room where the plant was more visible; no<br>significant effect on sorting task or change in the mood from<br>pre- to post-task. The task was the main element affecting<br>mood with sorting task ranked higher in 'concentration<br>demanding' and lower on positive mood feelings; this group<br>also didn't pay attention to the plant. Reviewer comment:<br>sorting task subjects engage in 'flow' and pay attention only<br>to the task at hand. |
| Khan, Younis,<br>Riaz, & Abbas,<br>2005 in<br>(Bringslimark<br>et al. 2009) | Well-being<br>[Academic<br>Performance] |                                                                                                                                        | Indoor              | Small                            | 222 masters and<br>graduate students<br>and 28 teachers<br>at a college                                                                                                                                                                                                  | Quasi-experiment with the single post-<br>test measure. Potted plants introduced<br>into classrooms of the college                                                                                                                                                                                                                                                                                                                                                                                                                                  | Class and other<br>working time on up to<br>and perhaps more<br>than 30 work days                                                              |                                                                                                                                  | Self-reported change in<br>indoor air quality,<br>aesthetics, performance                                                                                                                                                                                                                                      | Large majorities reported that the plants improved air quality, increased pleasantness, and helped improve performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (Daly et al.<br>2010)                                                       | Well-being<br>[Academic<br>Performance] | Plants improve<br>student<br>performance                                                                                               | Indoor              | Small                            | 360 students of<br>Year 6 or 7. 13<br>classes in 3<br>schools of<br>Brisbane,<br>Australia.                                                                                                                                                                              | (1) 3 plants in treatment classroom, (2)<br>no-plant control. Students tested before<br>treatment (base-line) and after 6 weeks<br>of plant presence.                                                                                                                                                                                                                                                                                                                                                                                               | 6 weeks                                                                                                                                        | Epipremnum aureum,<br>Dracena fragans,<br>Pathiphyllum sp.<br>Between 250-300mm.                                                 | Performance in tests<br>(spelling and math) in all<br>three schools with the<br>addition of reading test in<br>one school and science in<br>another.                                                                                                                                                           | Mathematics, Science & spelling scores improved 11–14%, compared with no-plant rooms (True for two of the three schools)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (Knight &<br>Haslam 2010)                                                   | Well-being<br>[Academic<br>Performance] |                                                                                                                                        | Indoor              | Small                            | Ex1: 112 people<br>(31% students,<br>61% employed,<br>8% retired. within<br>the psychology<br>department; Ex2:<br>47 workers in<br>commercial city<br>office (35% non-<br>management;<br>30% lower<br>management;<br>26% middle<br>management; 9%<br>upper<br>management | Productivity comparison under four<br>treatments: (1) lean - tight control over<br>office space, (2) enriched - decorated by<br>a researcher with plants or art, (3)<br>empowered - self-decorated, (4) self-<br>decorated and redecorated by the<br>researcher. In ex1, participants were<br>tested in a 3.5X2m office with no<br>windows or natural light. Temperature<br>and light kept constant. Followed by test<br>time. Ex. 2; same but with the addition of<br>OCB - organisational citizen behaviour<br>task. Carried out in 4.5X6m office | 5 min alone in the<br>room + test time                                                                                                         | Decorations were six<br>potted plants (35cm)<br>and six pictures hung<br>from the wall<br>(80X80cm). All picture<br>had planted. | Productivity tests<br>included: card-sorting<br>task and vigilance task<br>followed by a<br>questionnaire. Comfort,<br>job satisfaction,<br>Organisational<br>identification,<br>productivity (attention to<br>detail, information<br>processing, information<br>management,<br>organisational<br>citizenship) | Decorated is better than lean; empowered yields best<br>productivity results. Results attenuated if the input is<br>overridden (condition 4). Participants inside a lean office felt<br>disengaged and less autonomous. Indoor plant presence<br>increases productivity, performance, job satisfaction, by<br>>10%, measured by(28-31): > Faster times to complete<br>computer Tasks > Creative task performance > Sorting and<br>editing tasks > Attention capacity > Job satisfaction (on all 10<br>criteria tested) > Promotes good office relationships.                                                                                                  |

| (Matsuoka<br>2010)                            | Well-being<br>[Academic<br>Performance]                 | The naturalness<br>level of views<br>increases<br>performance.                                               | Indoor  | Large<br>(views) | 101 public<br>highschools<br>Infomation<br>obtained from the<br>principal, vice-<br>principal of the<br>school through<br>interviews. | Data collected for the 2004-2005<br>academic year. Control variables:<br>demographic, socioeconomic, school<br>size, building age. Treatment: views, tree<br>density,                                                                                                                                                                                                                                                                                                   | Daily through the school year.                                  | Included campus lawns,<br>athletic fields, parking<br>lots.                                                                                                                                                        | Behaviour: Crime rates,<br>Performance: graduation<br>rates, performance on<br>standardised tests.<br>Demographic, Views | Views of greater quantities of trees and shrubs from<br>cafeteria increase merit award recipients (4.8%), graduation<br>rates (3.7%) and college plans (12.2%) – percentages= an<br>explanation of the variance. These schools also offered<br>longer lunch periods (40 min). Views from classroom were<br>not significantly associated. Regarding quality of the views:<br>mowed grass and parking lots are associated with lower<br>performance. Higher naturalness = higher performance.                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (White &<br>Gatersleben<br>2011)              | Well-being<br>[Aesthetic]                               | Green facades and<br>meadow roof<br>provide the<br>biggest aesthetic<br>benefit (compared<br>to turf, sedum) | outdoor | Small            | 188 participants<br>(8 interviews)                                                                                                    | Simulation. Participants of an online<br>survey rated a series of photographs of<br>houses with and without vegetation<br>(Study 1). Eight interviews examined<br>preference and installation concerns<br>(Study 2). A total of 24 photos. Four<br>different houses modified in six different<br>versions: turf roof, a sedum roof,<br>meadow roof, ivy facade, brown roof and<br>no-vegetation. Participants randomly<br>assigned one type of vegetation<br>condition. | Not specified. While<br>participants complete<br>online survey. | turf roof, a sedum roof,<br>meadow roof, ivy<br>facade, brown roof.<br>More details not<br>specified.                                                                                                              | Preference, beauty,<br>affective quality,<br>perceived restoration.                                                      | Houses with vegetation perceived as the most beautiful and<br>restorative. Ivy façade and meadow roof were the preferred<br>methods for vegetation integration. Based on study 2, the<br>biggest barrier to green roof/ facades is the maintenance<br>requirements (15 comments) followed by installation (7<br>comments)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (Lee et al.<br>2014)                          | Well-being<br>[Attention<br>Restoration &<br>Aesthetic] | Preference for<br>diverse, tall, and<br>green.                                                               | outdoor | Small            | 274 office<br>workers. 74%<br>female                                                                                                  | Employees rated preference for 41<br>images. One bare roof and 40 living roof<br>images (with different typologies)                                                                                                                                                                                                                                                                                                                                                     | Web survey.<br>Approximately 20 min<br>to complete              | Life form: succulent,<br>grassy, mixed. Height:<br>low, tall, mixed. Colour:<br>green, grey, red, mixed                                                                                                            | Preference, The<br>restorative potential of<br>best and worst ratings.<br>Connectedness to Nature<br>Scale               | All living-roof better (preferred) than the concrete roof. Tall,<br>green, grassy preferred over other forms. All flowering living<br>roof images were more preferred than the original<br>non=flowering image. Moderate levels of diversity preferred<br>to no diversity. They believe they would recover their<br>attention in tall grassy vegetation (9 points mean score).                                                                                                                                                                                                                                                                                                                                                                                                              |
| Hartig et al.<br>(1991). in<br>(Kaplan 1996). | Well-being<br>[Attention<br>Restoration &<br>Stress]    |                                                                                                              | outdoor | Large            | Not specified                                                                                                                         | compared wilderness vacationers with<br>urban vacationers and a non-vacationing<br>control group                                                                                                                                                                                                                                                                                                                                                                        | unknown                                                         | N/A                                                                                                                                                                                                                | attention restoration<br>assessed through proof-<br>reading. Happiness score                                             | Following their trip, the wilderness group showed a significant improvement in proof-reading performance, a task that is highly demanding of directed attention. By contrast, the other two groups showed a pre-test-to-post-test decline. Interestingly, the wilderness groups had the lowest overall happiness score at the post-test. At a 3-week follow-up, however, they showed the highest                                                                                                                                                                                                                                                                                                                                                                                            |
| (Ulrich et al.<br>1991)                       | Well-being<br>[Attention<br>Restoration &<br>Stress]    | stress relief                                                                                                | outdoor | large            | 120                                                                                                                                   | stressful movie - colour/sound<br>videotapes of one of six different natural<br>and urban settings. Data concerning<br>stress recovery during the environmental<br>presentations were obtained from self-<br>ratings of affective states and a battery<br>of physiological measures: heart period,<br>muscle tension, skin conductance and<br>pulse transit time, a non-invasive a<br>measure that correlates with systolic<br>blood pressure.                          | 10 min stress video<br>then 10 min video -<br>nature or urban   | 1 of 6 plants, rest was<br>water, traffic, etc -<br>Setting dominated by<br>trees and other<br>vegetation; some<br>openness among trees;<br>occasional light breeze<br>in the background; no<br>people or animals. | Self-rating and physical tests                                                                                           | nature views reduce stress and its impacts.responses to nature had<br>a salient parasympathetic nervous system component; directional<br>differences in cardiac responses to the natural vs urban settings,<br>suggesting that attention/intake was higher during the natural<br>exposures Findings were consistent with the<br>predictions of the psycho-evolutionary theory that restorative<br>influences of nature involve a shift towards a more positively-toned<br>emotional state, positive changes in physiological activity levels, and<br>that these changes are accompanied by sustained attention/intake.<br>Content differences in terms of natural vs human-made properties<br>appeared decisive in accounting for the differences in recuperation<br>and perceptual intake. |

| (Lohr &<br>Pearson-Mims<br>1996)                              | Well-being<br>[Attention<br>Restoration &<br>Stress] |                                                                                                                       | Indoor  | Small | 97 people (81<br>students)                                                                            | Students completed a task within a large<br>windowless computer room. (1) with<br>plants (2) decorative (3) control                                                                                                                                  | while completing the<br>task (~15 min)                                                                                                                                                                                             | 17 plants distributed<br>around the perimeter<br>of the room. Varied<br>sizes (25-225 cm).<br>Specific species not<br>specified | Shape-recognition task.                                                                                                                                                                                                                                 | 12% faster reaction time in a group with plants. BP measures<br>consistent with lower stress reactivity and faster stress<br>recovery Self-reported more attention.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------|-------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kim &<br>Mattson, 2002<br>in<br>(Bringslimark<br>et al. 2009) | Well-being<br>[Attention<br>Restoration &<br>Stress] | Flowering plants<br>have higher<br>impact in women<br>than men                                                        | Indoor  | Small | 150 students;<br>windowless bio-<br>monitoring<br>laboratory                                          | Randomised experiment with repeated<br>measures (1) Flowering geraniums, (2)<br>Geraniums with flowers removed, (3) no-<br>plant control                                                                                                             | 5 min following a 10<br>min stress induction<br>procedure                                                                                                                                                                          | Geranium planted in 15<br>cm pots. With flowers<br>or removing flowers<br>depending on<br>treatment. Nine plants<br>per room    | EEG, EDA, ST, ZIPPERS                                                                                                                                                                                                                                   | Among highly stressed women, flowering geraniums<br>promoted faster and more complete stress recovery, as seen<br>in declines in beta activity and EDA; flowering geraniums<br>also evoked a greater increase in positive affect, less the<br>decline in attentiveness in women generally; no significant<br>effects found for men                                                                                                                                                                                                                                                                             |
| (Hartig et al.<br>2003)                                       | Well-being<br>[Attention<br>Restoration &<br>Stress] | Blood pressure<br>reduced in a room<br>with a view.<br>Restorative effects<br>depend on<br>preferences                | outdoor | Large | 112 normotensive<br>students                                                                          | (1) Participants were in first in a room<br>with views and then walking in a natural<br>reserve. (2) room with no views and then<br>a walk through an urban environment.<br>Also dived in (a) completing a demanding<br>task before walk (b) no task | Tests for three<br>months. Drive 10min<br>sitting quietly in the<br>room + BP reading, 50<br>min walk with<br>assistant (conv.<br>Minimised) + BP and<br>some surveys<br>(halfway through), 10<br>min final surveys back<br>in lab | Walks in a national<br>park. Well grated dirt<br>road                                                                           | Ambulatory blood<br>pressure (Accutracker II<br>monitor), emotions<br>(Zuckerman's Inventory<br>of Personal Reactions –<br>attention, fear, sadness,<br>anger, positive), Overall<br>Happiness Scale attention<br>(Necker Cube Pattern<br>Control task) | Blood pressure of people immersed in nature walk is<br>2mmHg lower than baseline and city immersed people.<br>People completing no-test and walking in nature had the<br>biggest positive shift in emotion but the remaining groups<br>had a negative change self-reporting angrier after the<br>activity. Correlation is weaker than other studies but authors<br>claim the approach prevents self-selection thus providing a<br>better understanding of the influence on people with less<br>affinity to nature.                                                                                             |
| (Kjellgren &<br>Buhrkall 2010)                                | Well-being<br>[Attention<br>Restoration &<br>Stress] | Nature<br>simulations also<br>help reduce stress<br>but less effective<br>than immersion in<br>natural<br>environment | outdoor | Large | 18 people<br>diagnosed with<br>stress and/or<br>burnout<br>syndrome (from<br>65 people<br>approached) | Individuals exposed to logical/thinking<br>test to induce stress followed by<br>relaxation period in: (1) sitting in wooden<br>bench in the woods (2) room with single<br>table and chair and a video                                                | 30 min after<br>performing stress<br>inducing task (5 min)                                                                                                                                                                         | Photographs from the<br>simulated environment<br>are from the same<br>woodland as the<br>natural treatment.                     | Hospital Anxiety and<br>Depression Scale (1-6,<br>normal; 6-10, borderline,<br>10+, depression/ anxiety).<br>Stress VAS (self-estimated<br>stress), emotional state<br>test, blood pressure                                                             | Natural environment resulted in a sense of tranquillity,<br>intensified senses, connection to nature, being in the<br>present, self-reported well-being, renewed energy,<br>Simulated environment resulted in a sense of being cut off<br>from nature, longing to be in 'real' nature, lack of<br>concentration, anxiety, and some positive emotions. Stress<br>levels (measured from physiological and self-estimated<br>stress) reduced in both simulated and natural environment<br>(no differences in treatment. The natural environment has<br>more effects on well-being than the simulated environment. |
| (Tyrväinen et<br>al. 2014)                                    | Well-being<br>[Attention<br>Restoration &<br>Stress] | Restores, more<br>vital, creative,<br>better mood                                                                     | outdoor | large | 77 people                                                                                             | Seventy-seven participants visited three<br>different types of urban areas; a built-up<br>city centre (as a controlled environment),<br>an urban park, and urban woodland<br>located in Helsinki.                                                    | 20-30 mins                                                                                                                                                                                                                         | woodland and park.                                                                                                              | psychological (perceived<br>restorativeness,<br>subjective vitality, mood,<br>creativity) and<br>physiological (salivary<br>cortisol concentration),<br>EEG, blood pressure,<br>effects of short-term<br>visits to urban nature<br>environments.        | No seasonal differences occurred between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| (De Vries et al.<br>2013)    | Well-being<br>[Attention<br>Restoration,<br>Stress, Social<br>Cohesion,<br>Activity] | stress reduction,<br>stimulating<br>physical activity<br>and facilitating<br>social cohesion. | outdoor | large  | 1641 people from<br>eighty<br>neighbourhoods.<br>Dutch cities.                                                                                                                                                                                                                                                                                        | Data on quantity and quality of<br>streetscape greenery were collected by<br>observations. Data on self-reported<br>health and proposed mediators were<br>obtained for adults by mail<br>questionnaires (N ½ 1641). Multilevel<br>regression analyses, controlling for socio-<br>demographic characteristics. The average<br>quantity of public green area (i.e., square<br>metres available per residence within a<br>distance of500m)was used to select ten<br>more and ten less green neighbourhoods<br>within each city to ensure variation in the<br>amount of green area. | eighty<br>neighbourhoods -<br>exposure not<br>reported                                                          | unclear                                                                                                                                                                                                                                                               | mail questionnaire                                                                                                                                                                                                                                                                                                                                                                                                 | revealed that both quantity and quality of streetscape<br>greenery were related to perceived general health, acute<br>health related complaints, and mental health. Relationships<br>were generally stronger for quality than for quantity. Stress<br>and social cohesion were the strongest mediators. Total<br>physical activity was not a mediator. Physical activity that<br>could be undertaken in the public space (green activity) was,<br>but less so than stress and social cohesion. With all three<br>mediators included in the analysis, complete mediation<br>could statistically be proven in five out of six cases. In these<br>analyses, the contribution of green activity was often not<br>significant. The possibility that the effect of green activity is<br>mediated by stress and social cohesion, rather than that it<br>has a direct health effect, is discussed.                                                                                                                                              |
|------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Berto 2005)                 | Well-being<br>[Attention<br>Restoration]                                             | Plants outperform<br>geometrical<br>(fractal) patterns                                        | Indoor  | Large  | 32 undergraduate<br>students evenly<br>distributed in<br>sexes, treatment,<br>and control. New<br>set of students for<br>each experiment                                                                                                                                                                                                              | Using restorative and non-restorative<br>images. (1) Restorative effect: Attention<br>test followed by 25 images; then a<br>second attention test (2) Exposed to<br>geometrical patterns (3) time observing<br>pictures measured                                                                                                                                                                                                                                                                                                                                                | Tested within a<br>laboratory                                                                                   | Restorative images<br>tended to be mountain<br>views, lakes, the ocean.                                                                                                                                                                                               | Perceived<br>Restorativeness Scale:<br>being-away, fascination,<br>coherence, scope, and<br>compatibility (0-10<br>points). Attention<br>capacity (SART paradigm)<br>Response: participant<br>sensitivity, reaction<br>times, correct response<br>rate,                                                                                                                                                            | Participants exposed to restorative environments recover<br>attention capacity. Geometrical forms don't improve<br>attention even though they take no effort to analyse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Raanaas et al.<br>2011)      | Well-being<br>[Attention<br>Restoration]                                             | 5-minute breaks<br>are as effective as<br>plants in the room<br>to increase<br>performance    | Indoor  | Small  | 34 students. 22<br>women and 12<br>men.                                                                                                                                                                                                                                                                                                               | (1) Office setting (3.9mX2.1mX3.6m) with<br>four indoor plants (2) control. Attention<br>capacity assessed three times, before<br>beginning, after completing test and<br>after a 5-min break                                                                                                                                                                                                                                                                                                                                                                                   | While taking the test                                                                                           | A mixture of foliage and<br>flowering plants. Two<br>flowering plants by the<br>window (purple<br>flowers) and two large<br>foliage plants beside<br>the desk.                                                                                                        | Attention capacity<br>assessed through reading<br>span test, dual processing<br>task. Comparison<br>between baseline level<br>and the subsequent tests.                                                                                                                                                                                                                                                            | 5% better performance for plant treatment but no change<br>after the 5-min break                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (Nieuwenhuis<br>et al. 2014) | Well-being<br>[concentration,<br>satisfaction,<br>productivity]                      |                                                                                               | Indoor  | Medium | Office spaces (1)<br>open plan office<br>(4875m2) of a<br>consultancy in<br>London. 153<br>employees where<br>67 completed<br>before and after<br>survey. (2) 2 open<br>plan offices<br>(~360m2) from<br>health insurance<br>company. 177<br>employees with<br>81 completing 3<br>surveys. (3) 33<br>participants in a<br>series of work-<br>stations | 3 field experiments: (1) open-plan office<br>subdivided into sections with (a) at least<br>2 plants within sight from each work<br>station or (b) no plants visible from work<br>station. (2) two open-plan offices<br>selected with three survey periods,<br>before plants; two weeks after the plants<br>and 3.5 months after the plants. (b)<br>control office with no treatment) (3)<br>participants assigned a (a)lean or (b)<br>green condition and completed<br>analytical, processing and intellectual<br>tasks. Workstations                                           | (1) 8 weeks without<br>plants, 3 weeks with<br>plants. (2) 5 weeks<br>without plants, 3.5<br>months with plants | <ul> <li>(1) an average of three<br/>plants per five desks.</li> <li>About 90cm in height.</li> <li>(2) one plant per 3<br/>desks, each 90cm in<br/>height.</li> <li>(3) 8 plants or<br/>about 90cm in height.<br/>at least three plants<br/>within sight.</li> </ul> | self-reported measures of<br>perceived air quality,<br>satisfaction<br>concentration,<br>performance, and<br>(questionnaire before<br>and after plant<br>treatment), productivity<br>(self-reported and<br>objective). Study 2<br>productivity measured by<br>average call time, on-hold<br>time, the time between<br>calls. Study 3 measures<br>productivity by time and<br>accuracy completing<br>assigned task. | (1) perceived the ability to concentrate, air quality and<br>subjective productivity increased under 'green' condition.<br>Workplace satisfaction increased under both conditions.<br>Multilevel analysis (on 153 employees) confirms a significant<br>relationship between green office, concentration and<br>perceived air quality. (2) in this condition, employees have<br>less autonomy and a lower salary than in study 1.<br>Satisfaction significantly higher after plant treatment (this<br>effect did not decrease in the long-term), Air quality<br>perceived higher. No effect for concentration or objective<br>measures of productivity. Aditional analysis indicates<br>'disengagement' as a mediator for workplace satisfaction<br>stating that a green office tends to decrease disengagement<br>which in turn has a positive effect on satisfaction. (3) green<br>office rated more positively than lean office; less time to<br>complete the task but the difference in the number of errors<br>was not significant. |

| (Nejati et al.<br>2016)          | Well-being<br>[Energy &<br>Aesthetic]        | Outdoor access<br>through a balcony<br>has the higher<br>restorative<br>capacity.                          | Indoor  | Large<br>(views) | 958 nurses from<br>the Academy of<br>Medical-Surgical<br>Nurses (AMSN),<br>(993 responded<br>but 35 surveys<br>eliminated from<br>analysis) 94%<br>female | Simulation: Nurses evaluated the<br>restorative level of staff break room with<br>(1) outdoor access through a balcony, (2)<br>outdoor view through a window, (3) a<br>nature artwork, (4) an indoor plant, (5)<br>control - nothing. Two staff rooms used<br>for image simulation: a meeting room,<br>and a break room | An online survey<br>(~20min). Qualtrics<br>Online Survey<br>Software:<br>Demographic, Work<br>environment, break<br>patterns, break<br>quality, future break<br>areas, feedback | Simulation showcased a<br>medium sized leafy<br>plant, a view to a city<br>landscape with at least<br>one tree next to<br>window/balcony. | Restorative qualities:<br>restfulness, refreshment<br>in a 1-10 scale. Individual<br>aesthetic preference,                                                | With increasing levels of restorative effect we have; a room<br>with no window, plants or decoration (1.45); a plant; nature<br>artwork; window view; balcony (7.81)based on the<br>meeting room. Almost no difference reported between a<br>plant and nature work (1 point). The break room had higher<br>ratings for every condition (by approximately one point).                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------|---------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Korpela et al.<br>2014)         | Well-being<br>[Happiness]                    | Longer periods of<br>time spent in<br>nature yields a<br>higher benefit.                                   | outdoor | Large            | 3060 surveys age<br>15-74                                                                                                                                 | Exploring the correlation between the<br>average time spent in nature, (1) Blue<br>places -Lake, (2) green – forests, (3)<br>white – snow                                                                                                                                                                               | Varied length of stay.<br>Survey period<br>between 2009-2010.                                                                                                                   |                                                                                                                                           | Self-reported well-being,<br>participation in nature<br>recreation, Restoration<br>Outcome Scale, Social<br>company, Duration of the<br>visit.            | the longer time in nature-based recreation associated with<br>restorative experiences the better emotional well-being<br>perceived four weeks backwards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (Nielsen &<br>Hansen 2007)       | Well-being<br>[Health - Obesity<br>& Stress] | Short distances<br>from quality green<br>areas (including<br>garden) are<br>conducive to<br>lower obesity. | outdoor | large            | 1200 18-80 in<br>Denmark                                                                                                                                  | A survey on access and use of green<br>areas. It was completed by participants<br>followed including a 'health' section<br>gathering height and weight. This data<br>used to calculate the obesity index BMI.                                                                                                           | n/a                                                                                                                                                                             | green space                                                                                                                               | Activity type in public<br>green areas, self-reported<br>preferences (aesthetic),<br>distance from work,<br>frequency of visits,<br>obesity (BMI), stress | Access to a garden or short distances to green areas from<br>the dwelling is associated with less stress and a lower<br>likelihood of obesity. The number of visits cannot explain the<br>effects of green areas on the health indicators. It is<br>suggested that the significance of distance to green areas is<br>mainly derived from its correlation with the character of the<br>neighbourhood and its conduciveness to outdoor activities<br>and "healthy" modes of travel. There is a geography of<br>overweight (BMI427.5) and experienced stress in relation to<br>distance to publicly accessible green areas—as well as access<br>to a private garden or a shared green area at the dwelling. |
| Fjeld 2000 In<br>In (Fjeld 2002) | Well-being<br>[Health]                       | Plants improve<br>health (reduce<br>sick leave)                                                            | Indoor  | Small            | 48 employees of a<br>hospital radiology<br>department; a<br>large (80m2)<br>windowless room<br>with no natural<br>light.                                  | <ol> <li>Plants distributed through the room<br/>and light sources changed to full<br/>spectrum fluorescent light with higher<br/>lux; (2) no- intervention control</li> </ol>                                                                                                                                          | 3 months during work<br>days sampling control<br>(Sep. – Oct 1997)<br>followed by 3 moths<br>of treatment (Nov -<br>Feb 1997).                                                  | 23 containers with one<br>or more indoor foliage<br>plants.                                                                               | Health symptoms on test<br>day (12 different<br>symptoms in total). Info<br>collected through<br>Questionnaire                                            | 25.6% reduction in mean symptom score for the group;<br>amount of symptom reduction a function of exposure time,<br>34% decrease in complaints amongst those who spend most<br>of their day in the room 21% and 17% decrease in<br>complaints in those spending 50% or 40% of their time in the<br>room. Department head reported 15% decrease in sick<br>leaves                                                                                                                                                                                                                                                                                                                                         |

| (Park &<br>Mattson 2008)                                       | Well-being<br>[Health]                        |                                                                                                                                 | Indoor  | Small | 90 patients<br>recovering from<br>an appendectomy<br>(52 males and 38<br>females) In a<br>hospital in Korea.<br>Good health<br>before diagnosis<br>and surgical<br>treatment. | Patients randomly assigned to a room (1)<br>without plants; (2) with 12 potted plants<br>of eight species of foliage and flowering<br>plants                                                                                                                                                                                                        | During hospital stay,<br>Study conducted for 6<br>months (July-Jan -<br>2005/06)                                                 | Arrowhead vine<br>(Syngonium<br>podophyllum), cretan<br>brake fern (Pteris<br>cretica), variegated<br>vinca (Vica minor),<br>yellow star jasmine<br>(Trachelospermum<br>asiaticum), peace lily<br>(Spathiphyllum),<br>golden pothos<br>(Epipremnum aureum),<br>kentia palm (Howea<br>forsteriana). Potted<br>with sterile, soilles<br>potting mix | Lenth of stay, pain<br>medication, vital signs,<br>self-reported pain<br>intensity, distress, anxiety<br>and fatigue (PPAF). State<br>trait anxiety inventory<br>from (STAI-Y1),<br>environmental<br>assessment scale (EAS),<br>and room satisfaction.               | With plants: fewer analgesic intakes, lower blood pressure,<br>lower heart rate, pain ratings, less anxiety and fatigue. The<br>stronger effect was for anxiety for both tests which was<br>significantly lower in three days. Systolic blood pressure and<br>heart rate were significantly lower both during the surgery<br>and during the first day after the surgery. The increase in<br>positive feelings, room satisfaction (94% stated plants as the<br>most favoraboule thing of their room). The length of stay<br>was not significantly different (4.64 vs 4.88 days).                                  |
|----------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Raanaas et<br>al. 2011)                                       | Well-being<br>[Health]                        |                                                                                                                                 | Indoor  | Small | 282 Patients of a<br>rehabilitation<br>centre. Two<br>groups (1) heart<br>surgery patients<br>(2) pulmonary<br>disease<br>(i.e.asthma,<br>chronic<br>obstruction)             | Quasi-experiment. (1) control group -<br>2007. (2) treatment group in 2008. 8 lung<br>in 10 heart groups each year.<br>Questionnaires filled every fortnight<br>beginning 2 weeks before the program.                                                                                                                                               | A 4-week program<br>conducted from Jan-<br>Nov in two<br>consecutive years<br>(2007, 2008). Each<br>program with ~20<br>patients | 28 pots added to<br>common areas of the<br>rehabilitation centre. In<br>self-watering pots and<br>cared for by<br>horticulturist in the<br>research team. Size<br>generally 40 cm height                                                                                                                                                          | Self-reported measures<br>of health, well-being and<br>emotions                                                                                                                                                                                                      | For analysis 80 heart and 64 lung patients successfully<br>completed all questionnaires. Women expressed<br>significantly higher satisfaction with plant treatment than<br>men. Lung patients in plant group reported larger<br>improvement during the program. Emotional state slightly<br>higher in plant treatment. Physical and mental well-being<br>reported relatively low at beginning and increases through a<br>period in both instances. No significant differences in these<br>study> authors explanation are that participants were<br>mobile and exposed to a variety of treatments and activities. |
| (Mao et al.<br>2017)                                           | Well-being<br>[health]                        | Forest bathing can<br>aid recovery from<br>cardiovascular<br>diseases                                                           | outdoor | Large | 34 elderly<br>patients (65-80<br>years old) with<br>chronic heart<br>failure (CHF);<br>Hangzhou City.<br>Good health aside<br>from the CHF                                    | Participants recovery process was<br>modified to include a four day trip to (1)<br>forest - 23 participants (2) urban control<br>area - 10 participants. Monitored<br>measures were taken before (baseline<br>levels) and after the trip. Food, physical<br>activity were controlled. Intake of<br>alcohol, smoking or coffee was not<br>permitted. | four days                                                                                                                        | Participants sent to<br>Huangtan Forest Park<br>about 160km away<br>from the city                                                                                                                                                                                                                                                                 | Mood (POMS); PM; brain<br>natriuretic peptide, BPN;<br>Cardiovascular disease<br>associated factors<br>(endothelin-1, ET-1;<br>renin-angiotensin system,<br>RAS; angiotensinogen,<br>AGT; angiotensin II,<br>ANGII; and ANGII<br>receptor type 1 or 2 AT1<br>or AT2) | Patients exposed to forest showed significant reduction of<br>brain natriuretic peptide in comparison to the city group and<br>their own baseline. Cardiovascular disease associated factors<br>were also significantly lower in the forest patients. Some of<br>these effects are attributed to higher air quality of the forest<br>(lower PM levels)                                                                                                                                                                                                                                                           |
| Fjield 2000 (b)<br>In (Fjeld 2002)                             | Well-being<br>[Health] & Air<br>Quality [VOC] | Classrooms with<br>plants have lower<br>VOC and lower<br>health complaints.<br>Indoor plants<br>don't increase<br>fungi spores. | Indoor  | Small | 120 junior high<br>school students<br>distributed in 6<br>classrooms; 3<br>intervention and<br>3 ordinary<br>classrooms                                                       | (1) 3 classrooms with plant and full<br>spectrum fluorescent light with higher<br>lux – 600-800 lux. (2) 3 ordinary                                                                                                                                                                                                                                 | 1 year (April 1998-<br>1999)                                                                                                     | 5 plants in containers<br>from 10 to 20 cm in<br>size,                                                                                                                                                                                                                                                                                            | Health symptoms during<br>the past week Room<br>assessment Self-reported<br>measures of air quality                                                                                                                                                                  | Symptoms (health complaints) reduced by 9% while control<br>group reported an increase in symptoms of 12% - total<br>change of 21% lower mean score for health symptoms in<br>classrooms with plants (significant lower coughing, fatigue<br>and eye irritation). 35% lower VOC. No difference in fungi<br>spores. Plants don't increase fungi spores. more positive<br>evaluation of the classrooms with plants (more beautiful,<br>brighter and more comfortable)                                                                                                                                              |
| Park &<br>Mattson, 2009<br>in<br>(Bringslimark<br>et al. 2009) | Well-being<br>[Hopsital length<br>of stay]    | 12 Plants in<br>hospital lead to a<br>lower length of<br>stay for<br>thyroidectomy<br>patients.                                 | Indoor  | Small | 80 female<br>thyroidectomy<br>patients; identical<br>single and 6-<br>patient rooms                                                                                           | Randomised experiment with repeated<br>measures (1) 12 potted foliage and<br>flowering plants in view from the bed, (2)<br>no-plant control                                                                                                                                                                                                         | Multiple days of<br>postoperative<br>recovery                                                                                    | spider plant<br>(Chlorophytum<br>comosum), and golden<br>pothos (Epipremnum<br>aureum),                                                                                                                                                                                                                                                           | Length of stay in hospital<br>from the day of surgery;<br>use of pain medication;<br>BP, HR, respiratory rate,<br>body temperature; self-<br>reports of pain intensity,<br>pain distress, fatigue, and<br>state anxiety; room<br>assessments                         | With plants, lower systolic BP and HR day of surgery and the<br>1st day after surgery; fewer anxiety days 1–3 of recovery;<br>less frequent analgesic intake, less pain intensity, distress,<br>and fatigue 3 days after surgery; rooms rated more<br>positively. No effects of plants for the length of<br>hospitalisation, diastolic BP, body temperature, or<br>respiratory rate during recovery                                                                                                                                                                                                              |

| Shoemaker et<br>al., 1992 in<br>(Bringslimark<br>et al. 2009) | Well-being [Job<br>Satisfaction]  |                                                                             | Indoor  | Small            | Workers in<br>private and open<br>offices (number<br>not clear, but 157<br>or more); only 14<br>completed all 3<br>surveys                                                                                | Quasi-experiment with three<br>measurement points. Removal of<br>personal plants, followed by 3 months by<br>(1) plant scaping (1–3 desk or floor-sized<br>plants for private offices; planters and<br>desk- or floor-sized plants for open<br>areas), or (2) installation of artwork and<br>then plant scaping 6.5 months later                                                                                                                                                                                                                                                                                  | Workdays over (1)<br>6.5þ 3 months or (2) 3<br>months                                                                                                 |                                                                                                                                                                 | Job satisfaction,<br>assessment of workspace,<br>attitudes toward plants<br>and artwork                                                    | No significant effects of plants between conditions, across<br>measurement points or at any one measurement point, but<br>a positive attitude toward plants                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------|---------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Dravigne et<br>al. 2008)                                     | Well-being [Life<br>Satisfaction] | Indoor plants<br>improve job<br>satisfaction and<br>life quality.           | Indoor  | Small            | 450 employees in<br>Texas, USA. (full-<br>time workers)                                                                                                                                                   | Voluntarily responding Web-based job<br>satisfaction survey. The survey was<br>emailed once they agreed to participate<br>and the study was promoted through<br>newsletters. The participants self-<br>selected.                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                                                                                                                                                   | No description provided                                                                                                                                         | self-perceived life quality,<br>Job satisfaction;<br>presence, the absence of<br>plants (or nature views),<br>demographic info.            | No statistical differences when considering age, ethnicity,<br>salary, education levels, and position among employees who<br>worked in offices with or without plants or window views.<br>Males reported higher job satisfaction in the plant. The<br>satisfaction scale (happy, content): No-window/No-plant<br>58%, window 60%, Plants 69%, plants/window, 82% At<br>least 10% increase in job satisfaction when indoor plants are<br>available. Results apply to perceived life quality with only 1-<br>3% difference for each category,                                                                   |
| (Jones 2017)                                                  | Well-being [Life<br>Satisfaction] | Observing<br>dead/sick plants<br>has negative<br>effects on well-<br>being. | outdoor | Large            | 189 counties in 15<br>US states (where<br>the beetle was<br>detected between<br>(2005-2011).                                                                                                              | Extracting data on life satisfaction from a<br>countrywide annual survey in operation<br>since 1989 Behavioural Risk Factor<br>Surveillance System, 'How satisfied are<br>you with your life?' comparison, (1)<br>before beetle, (2) during beetle                                                                                                                                                                                                                                                                                                                                                                | A survey conducted<br>over the phone by an<br>independent group.<br>Time not specified. It<br>is annual survey<br>randomly to selected<br>individuals | An invasive beetle<br>(emerald ash borer)<br>Native to Asia. At<br>sufficient density, the<br>tree (ash tree) is unable<br>to continue functioning<br>and dies. | Life satisfaction<br>(happiness index), years<br>since beetle detection,<br>Other variables:<br>demographics, income,<br>age, health, etc. | People living in counties where the beetle has been detected<br>report lower life- satisfaction. (0.127 less satisfied in a 4-<br>point scale), Effect is lagged 5 years (consistent with tree<br>mortality rates and reduction of environmental quality). The<br>change could be attributed to delay of time it takes for<br>people to subjectively perceive the change or because of<br>modified behaviours. Effect is equivalent to a 2.3% economic<br>contraction as reported by De Nerve et al. 2014                                                                                                     |
| (Morton et al.<br>2017)                                       | Well-being<br>[Memory]            | Restoration effect<br>responds to<br>preferences<br>(linked to identity)    | Indoor  | Large<br>(views) | Three studies in<br>south west<br>England:<br>(1) 140<br>psychology<br>students (116<br>female) (2) 109<br>psychology<br>students (85<br>female) (3) 122<br>British psychology<br>students (93<br>female) | Simulation: view slides of urban or<br>nature sights within the obscure room.<br>(1) Participants assigned an 'urban/ rural<br>identity through the intro. (2)<br>Participants completed memory task<br>(stream of numbers in a computer<br>program) before and after identity<br>manipulation (3) Identity manipulation<br>focused on national and personal<br>identity. They were shown urban pictures<br>as well as typical British and Australian<br>nature. For every experiment<br>participants asked to reflect on what it<br>means to be an 'urbanite', 'ruralite',<br>'British', or 'personal' identity. | (1) tested on four<br>separate occasions. 1<br>min per image. ~20<br>min to complete<br>survey (2) memory<br>test                                     | (1) Nature pictures<br>included forests and<br>lakes. Urban pictures<br>included city skylines,<br>traffic, shopping malls.                                     | <ul> <li>(1) aspirations (intrinsic<br/>vs. extrinsic aspirations)</li> <li>(2) short-term memory</li> </ul>                               | (1) Identity-based manipulation shifts the way people think<br>about themselves, (1) Exposure to images corresponding to<br>the identity increase intrinsic aspirations (you will make the<br>world better) – important but not significant relationship, (2)<br>short-term memory is better after exposure to images<br>consistent with the salient identity (urban or rural). (3)<br>Intrinsic aspirations increase when exposed to images<br>relevant to their identity. A variety of environments (natural<br>and urban) can have restorative potential depending on the<br>preferences of the individual |

| (Shibata &<br>Suzuki 2004)                               | Well-being [Mood<br>& Creativity]                           | Plants have no<br>effect on mood.<br>Magazines have a<br>negative effect on<br>mood.                                     | Indoor | Small  | 90 students (35<br>males and 55<br>females);                                                                                              | Inside a laboratory room with a curtained<br>window, students perform a word<br>association task in either (1) a room with<br>a plant approximately 2.5m in front of<br>the desk (2) a magazine stand in the<br>same position of the plant or (3) control<br>room. 30 students per treatment                                                                                                                                                  | Approx. 15 min. 5 min<br>wait within the room,<br>mood survey,<br>association task (10<br>min), mood<br>evaluation, room<br>eval, task eval.                                         | Plant was a 1.5m<br>Massangeana Dracena                                                                                                                                                                                                         | Word association task,<br>mood (happy, tired, calm,<br>confident, tense,<br>concentrated, at-ease,<br>energised, distracted),<br>assessment of feelings<br>about the task, their own<br>performance, the room,<br>and effects of the room<br>on their performance | Women performed word association better than men across<br>every treatment. Best performance in a room with the plant,<br>followed by control room and lastly by magazine room.<br>Significant differences only between plant and magazine.<br>Mood: participants in control room felt less confident and<br>energised; plants rated calmer and tranquil; magazines<br>distracting.                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Lohr &<br>Pearson-mims<br>2000)                         | Well-being [Pain<br>Tolerance]                              | Room with plants<br>perceived as<br>cheerful. Pain<br>tolerance higher<br>than no plants or<br>attractive<br>decorations | Indoor | Small  | 198 adults.<br>(mostly university<br>students). Paid<br>\$10.00 for their<br>participation                                                | Within a room (3.5X6X2.4m) with white<br>walls, subjects placed their hand in icy<br>water under one of three treatments: (1)<br>no-plant control, (2) decorated with<br>colourful art and lamp (3) 4 plants.<br>Temperature and light kept constant.<br>Hand temperatures calibrated with 2 min<br>immersed in 37C water, Subjects were<br>free to remove their hands from cold<br>water when they 'felt uncomfortable'.                     | 10 min desensitising<br>subject from outside<br>stress (and<br>completing surveys),<br>2 min warm water<br>(37C), 5 minutes on<br>icy water, 5-10 min<br>completing post-<br>surveys | 4 different plants,<br>species not specified.<br>From article images: 1<br>succulent cascading<br>down from the<br>bookshelf, 2 small<br>plants on the desk and<br>one tall plant beside<br>the desk.                                           | demographic, self-<br>evaluated ability to<br>handle pain, room<br>assessment (following<br>Semantic Differential<br>Scale), physiological<br>response (skin<br>temperature, blood<br>pressure), ZIPPERS, time                                                    | Room with plants present rated as cheerful, calming and<br>attractive. Rated higher than decorated room but not<br>significantly different. No differences for the physiological<br>measures on any of the three treatments. Plant rooms<br>reported more positive emotions (carefree, friendly)<br>(authors report variations with previous studies with Lohr<br>(1996) and Shoemaker (1992) didn't find the variation).<br>People in all rooms felt happy before experiment but only<br>plant room remained happy after icy water exercise. People<br>in Plant room were twice more likely to complete the icy<br>water exercise.                                                                                                      |
| Park et al.,<br>2004 in<br>(Bringslimark<br>et al. 2009) | Well-being [Pain<br>Tolerance]                              | Flowering plants<br>lead to lower pain<br>distress.<br>(simulation)                                                      | Indoor | Small  | 90 female<br>students;<br>simulated<br>hospital patient<br>room set up in<br>windowless<br>biomonitoring<br>laboratory                    | Randomised experiment with repeated<br>measures (1) 10 foliage plants, (2) 3<br>foliage plants and 7 flowering plants, (3)<br>no-plant control                                                                                                                                                                                                                                                                                                | Approx. 10 min                                                                                                                                                                       |                                                                                                                                                                                                                                                 | Pain tolerance, self-<br>ratings of pain intensity<br>and pain distress, EEG,<br>EDA, ST                                                                                                                                                                          | With foliage plants alone, longer pain tolerance, lower self-<br>ratings of pain intensity, lower EDA compared to no-plant<br>control; with both foliage and flowering plants, longer pain<br>tolerance, lower self-ratings of pain intensity and pain<br>distress than both foliage plants alone and no-plant control                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (Smith et al.<br>2011)                                   | Well-being<br>[Productivity -<br>sick leave &<br>Aesthetic] |                                                                                                                          | Indoor | Medium | 151 office<br>workers who<br>responded both<br>surveys and work<br>in one of 2 open<br>plan offices of<br>similar size and<br>orientation | A participant responded a survey before<br>and after treatment: (1) office with<br>plants (2) no plant control. Office with<br>plants first decorated with two 1.8 Ficus,<br>1 Dracena, two Philodendrons, two<br>Schindapus and 6 screen planters mixing<br>Dracena and Calathea. Halfway through<br>the study period, decoration changed to<br>plants under 1m tall (similar species);<br>additionally 39 'desk bowls' were<br>distributed. | 6 months, from<br>February-July 2008. A<br>change in installation<br>occurred after 3.5<br>months.                                                                                   | the First seven plants<br>were tall plants (1.6m)<br>with the ficus reaching<br>1.8m. The screen<br>planters had lower<br>plants (80 cm). For<br>second part no plant<br>was higher than 1.05 m<br>tall. Watering and<br>dusting every 3 weeks. | Viability, Aesthetics, User<br>experience of place (self-<br>reported comfort,<br>productivity, stress,<br>mood, noise, creativity,<br>motivation, plant<br>preference, etc), short<br>term sickness statistics                                                   | Offices with plants are more comfortable and aesthetically<br>pleasing. The addition of plants reduced stress and health<br>concerns. An indication that the level of plants provided for<br>plant treatment group is close to optimum (19 large plants<br>or 19 medium and 39 small plants). Plants in plant treatment<br>had significantly less sick leave than the same period for the<br>previous year while the control group increased their sick<br>leave. The difference saving equates to approximately<br>£45,000 accounting for the cost of plants the net gain would<br>be £38,700. There are many other factors that can influence<br>the results including management, light, temperature,<br>furniture, ventilation, etc. |
| (Larsen &<br>Adams 1998)                                 | Well-being<br>[Productivity &<br>Social Cohesion]           | more plants more<br>perception o well-<br>being and<br>productivity and<br>attractiveness of<br>the office               | Indoor | Small  | 81 people                                                                                                                                 | no plants, some plants (10 per 130 feet<br>office 7% volume)), lots of plants (22 and<br>19% of volume), give a task and give a<br>questionnaire. A convenience sample,<br>advert for testing font preference and<br>paid small reimbursement.                                                                                                                                                                                                | series of timed<br>activities 6min, 60-<br>second x 3 and<br>questionnaire not<br>timed.                                                                                             | see methodology                                                                                                                                                                                                                                 | productivity and<br>attractiveness, comfort,<br>etc.                                                                                                                                                                                                              | The number of plants decreased productivity but people felt<br>better: more comfortable as the office was more attractive.<br>Mood evaluation showed improvement when plants are<br>dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| (Wei et al.<br>2014)      | Well-being<br>[Prosocial<br>Behaviour &<br>Aesthetic] | More well-being =<br>more empathy,<br>agreeable,<br>positive feeling.              | outdoor | large | (1) 846 adult<br>volunteers self-<br>selected to take<br>one or more<br>surveys from 15-<br>20 survey list. (2)<br>180 individuals (3)<br>112 participants<br>(27% women). (4)<br>45 students | 4 studies: (1) surveys relating<br>perceptiveness, connection with nature.<br>(2) exposed to natural images (rated by<br>beauty) + dictator task to measure<br>generosity (3) a different set of images<br>and the Trust Game. (4) participants<br>exposed to houseplants folding<br>pamphlets for charity                                                                                                                                                                                                                                                                                                                                                                                 | The images for<br>experiment 2 and 3<br>were turned into 1<br>min videos. Followed<br>by surveys. | Beautiful images usually<br>mountain landscape<br>and water bodies. Non-<br>beautiful more uniform<br>vegetation. Plants used<br>for experiment four not<br>specified. | Perceive natural beauty,<br>connectedness with<br>nature Agreeableness,<br>perspective taking,<br>empathy, generosity,<br>trusting, helping<br>behaviour                                                                                                                                                                                                                          | The participants with self-reported higher tendency to perceive<br>natural beauty were more agreeable, perspective taking and<br>empathic. Beautiful plants lead to more helpful behaviour (more<br>pamphlets folded) – Reviewers note: is it maybe measuring<br>productivity instead of helpful behaviour?                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|---------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Aitken &<br>Palmer 1989) | Well-being<br>[Prosocial<br>behaviour]                | Plant decoration<br>improves<br>perceptions of the<br>business<br>visitors/clients | Indoor  | Small | 170 students of<br>basic<br>communication.                                                                                                                                                    | 190 statements extracted from student<br>essays on the use of plants in<br>communication. The statements<br>represent comments about feelings and<br>opinions generated by the plants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                               | N/A                                                                                                                                                                    | feelings, attitudes,<br>constructed meanings<br>attached to plants                                                                                                                                                                                                                                                                                                                | Most students attributed meanings to plants. In general, the<br>use of plants conveys an image of professionalism, caring<br>and improves social connection (more personal, improves<br>the perception of staff). Some differences responding to<br>gender 54% of females believe it makes the office more<br>personal (vs 30% of males).                                                                                                                                                                                                                                                                                                                        |
| (Zang et al.<br>2017)     | Well-being<br>[Prosocial<br>Behaviour]                | More well-being =<br>more empathy,<br>prosocial<br>behaviour)                      | both    |       | Participants were<br>846 adult<br>volunteers<br>residing in the US.<br>Participants self-<br>selected                                                                                         | Three studies: 1) nature perception and<br>agreeableness; 2) participants rate<br>images in a video based on their beauty<br>(1-7 scale beauty index); participants also<br>asked to indicate proportion, symmetry<br>and complexity perceived in the images.<br>3) different images from previous study<br>and observations of prosocial behaviour<br>through the Trust Game (Berg, Dickhaut,<br>& McCabe, 1995). 4) participants<br>exposed to house plants while<br>completing a questionnaire of positive<br>emotions. The experimenter then left the<br>room and returned with origami papers<br>to administer the measure of helping<br>behaviour.'you can leave or want to<br>help? | varied                                                                                            | images nature and<br>house plants - 8 chosen<br>but not which stated                                                                                                   | Study 1: Agreeableness (<br>44-item Big Five<br>Inventory); Interpersonal<br>Reactivity Index (ability to<br>understand others),<br>beauty nature = better<br>prosocial behaviour, The<br>Engagement with Natural<br>Beauty subscale (Diessner<br>et al., 2008) is a 4-item<br>measure that assesses<br>the individual's self-<br>reported tendency to<br>perceive natural beauty | exposure to more beautiful nature, relative to less beautiful<br>nature, increases prosocial behavior. Study 1 yielded<br>correlational evidence indicating that participants prone to<br>perceiving natural beauty reported greater prosocial<br>tendencies, as measured by agreeableness, perspective<br>taking, and empathy. In Studies 2 and 3, exposure to more<br>beautiful images of nature (versus less beautiful images of<br>nature) led participants to be more generous and trusting. In<br>Study 4, exposure to more beautiful (versus less beautiful)<br>plants in the laboratory room led participants to exhibit<br>increased helping behaviour. |

| (Maas et al.<br>2009)                                     | Well-being<br>[Reduced<br>loneliness] | living near green<br>space less lonely                                                                | outdoor | large            | 10,089                                                               | data from the national Dutch survey and<br>a survey/interview carried out interviews<br>were done across population range<br>including 12-17yr olds and compared to<br>land use database - analysed - Perceived<br>general health, Number of health<br>complaints (maximum 43)experienced in<br>the last 14days, and, Self-rated<br>propensity to psychiatric morbidity                                                                                                                                                                                        | n/a                                                                                                                                                                                                                                                           | green space                                                                                                                                                                | Well-being data                                                                                           | This study explored whether social contacts are an<br>underlying mechanism behind the relationship between<br>greenspace and health. We measured social contacts and<br>health in 10,089 residents of the Netherlands and calculated<br>the percentage of green within 1 and a 3 km radius around<br>the postal code coordinates for each individual's address.<br>After adjustment for socioeconomic and demographic<br>characteristics, less green space in people's living<br>environment coincided with feelings of loneliness and with<br>perceived shortage of social support. Loneliness and<br>perceived shortage of social support partly mediated the<br>relation between green space and health. Overall, people<br>with more green space in their living environment feel<br>healthier, have experienced a lower number of health<br>complaints in the last 14 days and have a lower self-rated<br>propensity for psychiatric morbidity (Table2,<br>models1and2). The relation between green space and the<br>different health indicators was stronger and more consistent<br>for the percentage of green space in a 1km radius around<br>people's home. |
|-----------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|---------|------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chang & Chen,<br>2005 in<br>(Bringslimark<br>et al. 2009) | Well-being<br>[Relaxation]            |                                                                                                       | Indoor  | Large<br>(views) | 38 students in<br>laboratory setting<br>observing room<br>simulation | Phots offered as a simulation of six<br>different conditions: (1) no view, no plant<br>(2) no view, yes plant, (3) view of the<br>city, no plant, (3) city view, plant (5)<br>nature view, no plant, (6) nature view,<br>yes plant. Participants seated 3m away<br>from the screen. Physiological response<br>of the participant measured by a<br>biofeedback device. Participants asked to<br>use adjectives to describe the office and<br>complete a state-anxiety inventory. A<br>nature scenery showed at the beginning<br>of each exercise as a baseline. | 24 seconds of nature<br>scenery (sand dunes),<br>5-second blank blue<br>slide, treatment<br>image with no limit of<br>time to provide<br>adjectives, 15<br>seconds view, no time<br>limit to complete<br>Anxiety inventory.<br>Repeat for every<br>condition. | Plant treatments show<br>three indoor leafy<br>plants (Cuphea signal,<br>Aglanonema spp.,<br>Euphorbia<br>pulcherrima). The<br>natural view is a tree<br>(Ficus religiosa) | Electromyography,<br>electroencephalography,<br>blood volume pulse,<br>state-anxiety.                     | The combination of nature view and a plant engendered the<br>lowest mean level of alpha activity as measured on the right<br>the side of the head; lower anxiety with plants present,<br>especially if combined with nature view. Lowered tension<br>levels, using EEG, EMG, blood pressure readings. View<br>better than no view. Nature view better than city view. View<br>and plants better than the only view.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (Chen et al.<br>2009)                                     | Well-being<br>[Relaxation]            | this was a study of<br>method. But also<br>showed people<br>appreciated<br>different sense<br>aspects | outdoor | Large            | 178 visitors to the gardens                                          | On-the-spot survey aided with visual<br>photo stimuli for evaluation. The photos<br>were taken and presented to<br>respondents for landscape aesthetic<br>assessment. Two part survey (1) from<br>June to July to select photos that were<br>later used in the main photo panels<br>(quantitative opinion survey). (2)<br>questionnaire survey ranking of photos<br>by respondents was done from mid-<br>August to mid-October.                                                                                                                                | walking in the park +<br>question time.                                                                                                                                                                                                                       | photos of landscapes                                                                                                                                                       | the method of photo<br>panel preparation to<br>minimise photo quality<br>and montage impact on<br>results | their method removed photo bias, for this research most of 178 respondents went for stress relief                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| (Ikei et al.<br>2014)      | Well-being<br>[relaxation]                             |                                                                                                                                               | Indoor  | Small | 31 male office<br>workers, Tokyo.<br>Mean age of 37<br>years old.                                                                                    | (1) flower treatment: a flower vase with<br>30 pink roses placed on the desk in front<br>of the worker (~40cm distance). (2)<br>control condition. The room had<br>constant temperature (~24C) and<br>constant humidity (31.6%)                                                                                                                                | 4 min.                                                                                                                           | unscented pink roses in<br>a cylindrical glass vase                                                                                   | heart rate variability,<br>pulse rate, subjective<br>responses through a 13-<br>point rating scale<br>including POMS (profile<br>of mood states).                                                                                            | Rose condition showed a 21% increase in parasympathetic<br>nervous activity (high frequency of high rate variability). Self-<br>reported measures indicate the office workers exposed to<br>flowers are more comfortable and relaxed. They were also<br>twice as likely to feel vigour (energetic)                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Korpela et al.<br>2017)   | Well-being<br>[Restorative -<br>energy &<br>Happiness] | Nature yields<br>creativity and<br>happiness. Active<br>engagement<br>(outdoor exercise)<br>is more effective<br>than passive.                | Both    | All   | 841 employees of<br>11 organisations<br>within 150 m<br>from urban parks<br>and woodlands                                                            | Surveys questioning the characteristics of<br>the working environment, the views,<br>their level of activity and self-reported<br>well-being.                                                                                                                                                                                                                  | Electronic<br>questionnaire                                                                                                      |                                                                                                                                       | Exposure to nature (real<br>or artificial plants in<br>workspace), nature<br>views, frequency of<br>looking, physical activity,<br>happiness, vitality,<br>creativity, job autonomy,<br>social support, workload,<br>break time, gender, age | Mixed results. Authors acknowledge 'gaps' in experiment<br>design but highlight that in real-life scenarios "only a small<br>portion of the variance in employee well-being might be<br>explained by perceived nature exposure after controlling for<br>the stability of well-being and job characteristics" Active<br>engagement (swimming, running, cycling) in nature yield<br>more vitality than passive (views). More time spent in<br>garden yields higher happiness. Self-reported creativity at<br>work predicted more frequent self-reported use of one's<br>yard/garden. Creative people may be inclined to select green<br>homes.                   |
| (Fjeld et al.<br>1998)     | Well-being<br>[Restorative -<br>energy]                | Plant presence<br>increases energy<br>(reduced fatigue)                                                                                       | Indoor  | Small | 51 people<br>working in private<br>office (10m2) and<br>with a large<br>window.<br>Participants had<br>history of<br>'building sickness'<br>symptoms | (1) Treatment group: in window sill - 13<br>small foliage plants In the back corner - 1<br>large plant (175cm) with 4 smaller plants<br>at the base. 3 months, (2) control group                                                                                                                                                                               | A study conducted<br>Feb 1995-Feb 1996.<br>Fortnightly surveys<br>completed over two<br>periods: spring 1995<br>and spring 1996. | Aglaonema<br>commutatum, Dracena<br>deremensis,<br>Philodendron scandens,<br>Dracena fragans,<br>Epipremnum aureum,                   | Self-reported through a<br>questionnaire (completed<br>each fortnight), Health<br>symptoms during test<br>days: fatigue, dry throat,<br>cough.                                                                                               | Offices with plants had: 21% lower symptom score: (from<br>7.1 to 5.6 in period with plants) 23% decrease in<br>neurophysiological symptoms in office plants - greatest<br>reduction in fatigue 24% decrease in mucous membrane<br>systems – greatest reduction for dry throat and cough                                                                                                                                                                                                                                                                                                                                                                       |
| (Qin et al.<br>2013)       | Well-being<br>[Satisfaction]                           | colour, special and<br>rare elicited<br>satisfaction                                                                                          | outdoor | large | 249 and 64<br>visitors                                                                                                                               | of urban green spaces on a human was<br>evaluated with subjective questionnaires<br>as well as physiological measurements.<br>249 questionnaires on subjective<br>satisfaction evaluation were collected; in<br>addition to 64 visitors took the<br>measurement of physiological<br>parameters like<br>Electroencephalogram(EEG) and<br>Electrocardiogram(ECG) | being in the park                                                                                                                | different landscapes                                                                                                                  | questionnaire and EEG                                                                                                                                                                                                                        | interesting: "colour", "special" or "rare" resulted in more<br>satisfaction. Questionnaire results show that colour is one<br>of the most important factors which affect the overall<br>satisfaction of people with their vegetation environment.<br>Age difference analysis how children and elder people<br>presented higher satisfaction with vegetation environment<br>than adults. Significant negative correlation between the<br>ratio of low-frequency to high-frequency(LF/HF) values in<br>heart rate variability (HRV) analysis is and satisfaction values<br>indicated HRV may be an effective parameter for green<br>spaces influence evaluation. |
| (Gilchrist et al.<br>2015) | Well-being<br>[Satisfaction]                           | Longer visits are<br>more effective<br>than short yet<br>frequent visits.<br>Flowers,<br>woodland and<br>mown grass more<br>satisfying views. | outdoor | Large | 366 employees in<br>'knowledge'<br>generation.<br>Research,<br>technical,<br>management,<br>administration.                                          | Employees filled out a survey outlining:<br>the view from the window divided by<br>vegetation and building typology. Rated<br>their satisfaction with the view,<br>frequency and length of visits to the<br>park.                                                                                                                                              | The study lasted 10<br>weeks. Part of their<br>every-day work life.<br>Views and breaks<br>spent in nature.                      | Five peri-urban parks.<br>Varied from lawn,<br>meadow, woodland,<br>bushes and flowering<br>plants, water features,<br>distant fields | Subjective measures,<br>Short-version Warwick-<br>Edinburg Mental Well-<br>being Scale + views of the<br>green space at their<br>workplace.                                                                                                  | Use and views of green space for stress management.<br>Longer time spent in green space predict higher well-being<br>score. The frequency of visits and naturalness of the space<br>do not predict well-being score. Views of woodland, mown<br>grass, and flowering plants were significantly and positively<br>related to well-being.                                                                                                                                                                                                                                                                                                                        |
| (Taylor et al.<br>2002)                                           | Well-being [Self<br>Discipline] | Natural<br>surroundings<br>increase self-<br>discipline.                                       | outdoor | Large | 169 inner-city<br>teenagers in 12<br>identical high-rise<br>buildings (public<br>housing) Mean<br>age: 9.6       | Relationship with near-home nature and three forms of self-discipline:                                                                                                                                                                                                                 | View from home.<br>Interviews lasted 45<br>min.                                   | Pockets of trees and grass in between some buildings.                                                                                            | Parents ratings of near-<br>home-nature (view from<br>the window). Three forms<br>of self-discipline:<br>concentrating, inhibiting<br>initial impulses, delaying<br>gratification.                                                     | More natural views increased self-discipline. 20% higher discipline in girls with natural views No relationship for boys.                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------|---------|-------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Talbott et al.,<br>1976 in<br>(Bringslimark<br>et al. 2009)       | Well-being [Social<br>Cohesion] |                                                                                                | Indoor  | Small | 15 people with<br>Severe<br>psychopathology,<br>able to eat in a<br>hospital dining<br>room                      | <ul> <li>(1) No-plant control = 4-week</li> <li>observation in a dining room. Followed</li> <li>by (2) 4-week observation in a dining</li> <li>room with flowers</li> </ul>                                                                                                            | 1 hour during lunch<br>break over 4 weeks                                         | Flower vase with yellow<br>chrysanthemums on<br>each dining table                                                                                | Vocalisation, social<br>gazing, seating location,<br>time in the room, amount<br>of food consumed                                                                                                                                      | Significant but transient the increase in vocalisation; a significant increase in mean time spent in dining room and food consumed                                                                                                                                                                                                                                                                                                                                                           |
| Coleman &<br>Mattson, 1995<br>in<br>(Bringslimark<br>et al. 2009) | Well-being<br>[stress]          |                                                                                                | Indoor  | Small | 26 (of 30)<br>students<br>completed all 12<br>sessions, run in 3<br>compartments in<br>a classroom               | (baseline and then 3 treatment sessions);<br>(1) One 25 cm foliage plant in front of the<br>subject on a stool, (2) a life-sized photo<br>of the same plant in front of the subject<br>on the stool, (3) the stool alone, without<br>plant or photo, (4) no-plant or stool<br>baseline | 20-min sessions twice<br>a week for 6 weeks                                       |                                                                                                                                                  | ST                                                                                                                                                                                                                                     | No significant effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Liu et al., 2003<br>in<br>(Bringslimark<br>et al. 2009)           | Well-being<br>[Stress]          |                                                                                                | Indoor  | Small | 66 students;<br>windowless<br>biomonitoring<br>laboratory                                                        | Four-period crossover design:<br>randomization of treatments to time<br>slots (1) One 45 cm wide and high flower<br>arrangement, (2) lavender fragrance<br>diffused in the room, (3) both flower<br>arrangement and fragrance, (4) no-plant<br>or fragrance control                    | 4 weeks 30-min in<br>each condition; one<br>session per week                      |                                                                                                                                                  | EEG (alpha and beta),<br>EDA, ST, ZIPPERS                                                                                                                                                                                              | Among women, comparisons of the control to the visual and<br>olfactory exposures alone and in combination suggest lower<br>levels of activation and negative affect with treatments, for<br>particular minutes or subperiods of the exposure both<br>before and after a mental task, but not consistently over the<br>different physiological indices. Among men, the cut flower<br>arrangement reduced fear, and the lavender fragrance alone<br>increased EDA for some minutes of exposure |
| (Dijkstra et al.<br>2008)                                         | Well-being<br>[Stress]          | The more<br>attractive the<br>room, the less<br>stressful. Plants<br>make a room<br>attractive | Indoor  | Small | 77 Students asked<br>to visualise a<br>specific scenario<br>and looking to<br>single photo of a<br>hospital room | A simulation study (1) hospital room with<br>plants and (2) without plants. Scenario:<br>Participants had been hospitalised with<br>symptoms of legionella infection (a<br>headache, muscle pain).                                                                                     | 15 to 20 min while<br>completing the<br>perceived stress<br>survey and            | Treatment group were<br>provided with an<br>image. The simulation<br>included 5 plants: 2<br>large and leafy, 2<br>medium sized and one<br>small | Perceived stressed<br>(based on Stress Arousal<br>Checklist). Perceived<br>attractiveness of the<br>hospital room                                                                                                                      | Rooms with plants were significantly deemed as more<br>attractive and test-subjects perceived less stress (1.92 stress<br>level vs. 2.30 stress level). This effect would be attributed to<br>any plant. Attractiveness level of a room correlated to<br>reduced stressed levels.                                                                                                                                                                                                            |
| (Bratman et<br>al. 2015)                                          | Well-being<br>[Stress]          | Walk in nature<br>more restorative<br>than walk in city                                        | outdoor | Large | 45 participants<br>(23 nature, 22<br>urban)                                                                      | A walk in (1) natural environment, (2)<br>urban environment. With psychological<br>assessments before and after. They took<br>pictures through their walk.                                                                                                                             | 50-min walk through<br>urban green space or<br>urban streets. 75 min<br>for tests | The paved path through<br>a grassland with<br>scattered shrubs and<br>oak trees. Urban walk<br>in 4-lane street.                                 | Anxiety (STAI – State-trait<br>anxiety inventory),<br>Rumination Reflection<br>Questionnaire (RRQ),<br>PANAS (Positive and<br>Negative Affect<br>Schedule), ANT, memory,<br>attention network test,<br>OSPAN (operation span<br>task), | The decrease in anxiety, rumination, and negative affect<br>(supporting stress reduction theory). Increased verbal<br>working memory measured OSPAN test (supporting<br>attention restoration theory) – The test can predict<br>advanced reasoning, problem-solving, reading<br>comprehension. No change in visuospatial working memory.                                                                                                                                                     |